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Abstract

This 2-day project provides an introduction to the concept of lat-

tice quantum chromodynamics (QCD). The aim of day 1 is to deter-

mine simple gauge �eld observables. On day 2, we implement another,

slightly more complicated, gauge �eld observable and embark on de-

termining the lattice scale
√
t0/a. The project combines the di�erent

tasks building up a typical lattice calculation on high performance

super computers:

� Implementing gauge �eld observables using the lattice QCD soft-

ware Qlua (based on the scripting language lua)

� Performing the numerical determination of the observables (mea-

surements) by writing and submitting job-scripts to a scheduler

(SLURM)

� Parsing the output data and performing a statistical data analysis

This project requires programming skills and familiarity with a linux
command shell. The numerical calculations will be performed on the

university's high performance compute cluster (OMNI). The di�erent

tasks to be accomplished and to be documented in the report are high-

lighted using the keywords Tasks and Question.

Prior to starting this project

� An account on OMNI needs to be setup

� Files relevant for this project need to be transferred
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1 Introduction

1.1 Quantum Chromodynamics

The strong interactions of quarks and gluons are described by the theory
called quantum chromodynamics (QCD). QCD is a non-Abelian quantum
�eld theory with SU(3) gauge group. Quark and gluons carry a color charge
which can take three di�erent values. One of the characteristic features
of QCD is color con�nement i.e. no isolated color charges exist in nature.
When two color sources are separated, the strong force between them grows
so strongly that a quark-antiquark pair can be generated and the two color
sources split into two (or even more) color-less bound states. These color-less
bound states are generally called hadrons. The two most common types are
quark-antiquark pairs named mesons and three quark states referred to as
baryons. While in total six di�erent quark �avors (up, down, strange, charm,
bottom, top) are known resulting in a large zoo of particles studied experi-
mentally, the two lightest up and down �avors are the dominant constituents
of ordinary matter. Predominantly matter is made up of protons and neu-
trons, three particle baryons with either two up and one down quark (proton)
or one up and two down quarks (neutron). The most common mesonic state
are the pions with the π+ composed of an up and anti-down quark (or short
ud̄), its anti-particle is the π− (dū), and further the π0, a mixture of uū and
dd̄ exists.

In addition to the color charge, quarks carry an electric charge and also
have a spin which leads to global chiral symmetry. This chiral symmetry
gets however spontaneously broken which results in hadron masses much
larger than the masses of the constituent quarks and leads to the fact that
the pseudoscalar meson (pions) are much lighter than other states of the
spectrum. In 2008 Yoichiro Nambu was awarded the Nobel Prize in Physics
for his work on spontaneous symmetry breaking in subatomic physics.

Another characteristic feature of QCD is asymptotic freedom: When the
energy scale of interactions increases (corresponding to decreasing length
scales), the strength of the interaction between quarks and gluons reduces.
For the discovery of asymptotic freedom David Gross, Frank Wilczek, and
David Politzer were awarded the Physics Nobel Prize in 1973. While for
large energies perturbative descriptions of QCD work well, we need truly
nonperturbative methods to theoretically study QCD at low energies. In the
next Section we introduce the concept of lattice �eld theory which provides
an ab-initio nonperturbative framework to study QCD, typically referred
to as lattice QCD. The basic idea of lattice QCD is to perform numerical
simulations based on the QCD Lagrangian and was introduced by Nobel
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laureate Kenneth G. Wilson in 1974 [1].
The QCD Lagrangian is given by

LQCD = ψ̄i(x)
(
i (γµDµ)ij −mδij

)
ψj(x)−

1

4
Ga

µν(x)G
µν
a (x), (1)

where the �rst term describes the fermion contribution and the second the
contribution of the gauge �eld. The quark �eld ψ(x) is a function of the
space-time (x) and the spinor indices i, j denote the quark �elds are given in
the fundamental representation of the SU(3) gauge group. Dµ is the gauge
covariant derivative, γµ are Dirac matrices, m the mass of the quark, and δij
is a Kronecker delta. The gauge invariant gluon �eld strength tensor Ga

µν is
de�ned by

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (2)

with Aa
µ(x) the gluon �eld as a function of the space-time in the adjoint

representation of the SU(3) gauge group carrying the color indices a, b, c. The
gauge coupling is denoted by g and fabc are structure constants of SU(3).

In general, �eld theoretical quantities of interest are Green's functions. A
Green's function is the vacuum expectation value of a time ordered product
of �eld operators ϕ(x⃗, t)

⟨0|ϕ(x⃗, t1)ϕ(x⃗, t2) . . . ϕ(x⃗, tn)|0⟩ with t1 > t2 > . . . > tn. (3)

Such Green's functions can be expressed in terms of functional integrals and
calculated using the concept of Feynman path integrals i.e. we perform an
integral over all possible paths from the initial state to the �nal state

⟨0|ϕ(x⃗, t1)ϕ(x⃗, t2) . . . ϕ(x⃗, tn)|0⟩

=
1

Z

∫ [∏
x⃗,t

dΦ(x⃗, t)

]
Φ(x⃗, t1)Φ(x⃗, t2) . . .Φ(x⃗, tn)e

iS, (4)

where S is the action of the system and the expression is normalized by

Z =

∫ [∏
x⃗,t

dΦ(x⃗, t)

]
eiS. (5)

Since the exponents in Eqs. (4) and (5) are imaginary, the integrand oscillates
and convergence is not guaranteed. That can be remedied by performing a
simultaneous Wick rotation of all times from Minkowski to Euclidean time:
t = −iτ .
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1.2 Lattice Field Theory

After rotating the QCD Lagrangian (Eq. (1)) to Euclidean time, the path
integral formalism provides a framework to numerically calculate QCD quan-
tities like the masses of hadrons. However, before attempting any numer-
ical calculation, we need to render the problem �nite by discretizing 4-
dimensional space-time using a hypercubic grid and con�ning the volume
to a box of �nite extent. Hence we yield a lattice where neighboring points
are separated by the lattice spacing a and the coordinates xµ of the lattice
points are given by integer multiples of a:

xµ = anµ with nµ ∈ Z and µ = 0, 1, 2, 3. (6)

T/a

L/a

a

a

Figure 1: Sketch of a 2-dimensional lattice with L/a× T/a sites and lattice
spacing a.

Typically we simulate a box with equal extent in the spatial directions,
denoted by L, and a temporal direction labeled T . Considering a, L, and T
to carry units of length [fm], the total number of lattice sites is given by

V = (L/a)3 × T/a. (7)

A simple sketch (in easier to draw 2-dimensions) is shown in Fig. 1. Further
we need to specify what we do at the boundaries of the lattice and choose
to connect them periodically i.e. the 2-dimensional Grid in Fig. 1 becomes a
�doughnut� and in four dimensions we work with a (hyper-)torus.

Next we need a prescription to discretize the fermion �elds ψ and the
gauge �eld Aa

µ. The fermion �elds1 ψ live on the lattice sites xµ (black

1Here we are going to only calculate observables of the gauge �elds and will therefore
skip any further details on discretizing or simulating fermion �elds.
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squares in Fig. 1) and the gauge �eld is assigned to the links connecting two
neighboring lattice sites (black lines). We introduce the link variable of the
gauge �eld U and use the notation

U(x+ aµ̂, x) ≡ Ux,µ (8)

to denote a link pointing from lattice site x in µ̂ direction. This setup de-
�nes the general framework of lattice �eld theory (LFT). For QCD the link
variables are elements of SU(3) and de�ned by

Ux,µ ≡ exp
{
ig0aA

c
µ(x)Tc

}
, (9)

where Ac
µ(x) is the discretized Lie algebra valued gauge �led, Tc the genera-

tors of the gauge group, and g0 the bare coupling. The smallest closed path
on the lattice is called a plaquette which is the smallest 1 × 1 Wilson loop.
The product of its four gauge links de�nes the plaquette variable Px,µν . (The
detailed de�nition is presented in Sec. 2.1.1.) By performing a sum over
all plaquettes of the gauge �eld U , we arrive at the de�nition of Wilson's
plaquette gauge action [1]

SW = −
∑
all

plaquettes

2

g20
Re (Tr (1− Px,µν)) . (10)

When taking the naive continuum limit (a → 0), we recover the Yang-Mills
action

SW =
1

4g20

∑
x

a4F c
µνF

c
µν +O(a6). (11)

The integral over all gauge �eld con�gurations on the lattice corresponds to
an integral over all link variables Ux,µ i.e. we obtain the expectation value
for any observable A by calculating

⟨A⟩ = 1

Z

∫ [∏
x,µ

dUx,µ

]
Ae−SW , (12)

where the integration dUx,µ for a given link x, µ is to be understood as the
invariant integration over the group manifold with normalization∫

dU = 1. (13)
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Now we have introduced all ingredients to attempt a �rst quantum chro-
modynamics calculation on the lattice. What remains is to calculate ex-
pectation values. On a �nite lattice calculating expectation values requires
to evaluate �nite dimensional integrals which calls for numerical methods.
However, performing a simple numerical quadrature is not feasible: a typical
lattice with volume 323×64 has about 2.1 million lattice sites and 8.4 million
link variables which amounts for the SU(3) gauge group to 67 million real
variables.

To tackle such a problem we need Monte Carlo methods with importance
sampling i.e. for a given lattice action S we generate a set of points xi with
a probability

P (xi) ∼ exp{−S(xi)}. (14)

This allows us to better sample the important regions of the integral and
signi�cantly improve the overall accuracy. For a lattice gauge theory we

choose con�gurations U (i) =
{
U

(i)
x,µ

}
to sample the integral. Calculating the

expectation value

⟨0|A|0⟩ = 1

Z

∫
DU A(U) e−S(U) (15)

is then numerically approximated by the average

Ā ≡ 1

n

n∑
i=1

A(U (i)), (16)

where the index i runs over a sequence (ensemble) of gauge �eld con�g-
urations U (i). The gauge �eld con�gurations are generated using Monte
Carlo simulations creating a Markov chain i.e. a sequence of con�gurations
U (1) → U (2) → U (3) → . . . according to appropriate probabilities. For this
project these con�gurations have already been generated and two sets of
suitable con�gurations are provided as binary �les ready to use. Calculating
expectation values with Monte Carlo techniques further implies to perform
a statistical analysis i.e. our results carry statistical uncertainties

⟨A⟩ = Ā± δĀ, (17)

where ⟨·⟩ indicates the average over the sequence of con�gurations and δĀ is
the statistical error of the average derived from the variance σ2

Ā

δĀ =

√
σ2
Ā

n
. (18)
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Moreover there are systematic e�ects which need to be accounted for
and we need to correct for e�ects due to the �nite volume, and remove the
discretization by taking the continuum limit. However, details on that are
beyond the scope of this project.

In addition to the plaquette (the 1× 1 Wilson loop) we will later discuss
the planar 2 × 1 rectangle as well as the so called clover operator formed
by the four plaquettes around the lattice site x in the µ-ν plane. Rectangle
and clover operator can e.g. be used to reduce discretization errors in the
de�nition of the gauge actions. With appropriately determined coe�cients,
this leads e.g. to the Symanzik [2, 3] or the Wilson-clover [4] gauge actions.
These actions have di�erent discretization artifacts. Values for bare param-
eters, like the gauge coupling g0 in Eq. (9), depend on the chosen gauge
action. All simulations are performed at a �nite value of the lattice spac-
ing a and the actual value of a needs to be numerically determined. To
obtain physically meaningful results, simulations at di�erent values of the
bare gauge coupling are combined to subsequently take the continuum limit
i.e. performing the extrapolation a → 0. By taking the continuum limit,
discretization artifacts are removed and universal results independent of the
used discretization (gauge action) are obtained.

Plaquette, rectangle and clover operators are the key quantities to de-
termine properties of the gauge �eld. They can be related to the energy
density and allow to determine the lattice spacing or study nonperturba-
tively the renormalization group (RG) β function. Later we also introduce
the Polyakov loop [5] which forms a closed loop of all links in one direc-
tion. Polyakov loops are frequently used as an order parameter to study the
decon�nement transition of QCD simulations at �nite temperature.

Further introductions to lattice �eld theory and lattice QCD can e.g. be
found in

� Münster, �Lattice quantum �eld theory�, (2010), Scholarpedia, 5(12):8613

� Weisz and Majumdar, �Lattice gauge theories�, (2012), Scholarpedia,
7(4):8615

� Gattringer and Lang, �Quantum Chromodynamics on the Lattice�,
Springer (2010)

� Knechtli, Günther, Peardon, �Lattice Quantum Chromodynamics�, Springer
(2017)

� DeGrand and DeTar, �Lattice methods for quantum Chromodynamics�,
World Scienti�c (2006)
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� Montvay and Münster, �Quantum Fields on a Lattice�, Cambridge Uni-
versity Press (1994)

1.3 Work�ow of a LFT calculation

A typical lattice calculation proceeds in several steps to account for the fact
that the numerical costs and the required computational resources can be
rather di�erent.

1. Generate gauge �eld con�gurations

2. Determine observables (perform measurements)

� Implement observables to be measured

� Test and validate code

� Run measurements for an ensemble of gauge �eld con�gurations

3. Perform a statistical data analysis

4. Combine data from simulations at di�erent choices for the simulation
parameters to obtain a result in the continuum and at physical param-
eter values free of discretization artifacts

Generating the gauge �eld con�gurations typically dominates the costs but
the same gauge �eld con�gurations can be used to measure many di�erent
observables. Hence these gauge �eld con�gurations are saved as binary �les
and then subsequently read-in to carry out di�erent measurements. This is
exactly what we will do for this project and hence we can skip further details
on how to generate these gauge �eld con�gurations. The example below
refers to con�gurations [6] generated using the Symanzik gauge action with
two massless �avors in the fundamental representation. The fermions were
simulated using stout-smeared Möbius domain-wall fermions (Ls = 12,M5 =
1.0, ϱ = 0.1, Nstout = 3) and the gauge coupling is set to be β ≡ 6/g20 = 4.60.
We are thus looking at a system which has QCD-like properties. The format
of the binary gauge �eld is called NERSC and before the binary part 26 ASCII
lines are stored containing some information about the gauge �eld. Not all
prede�ned entries are �lled. We can print the entire header information using
the head command with the option -26

head =26 ckpoint_lat .500

BEGIN_HEADER
HDR_VERSION =
DATATYPE = 4D_SU3_GAUGE_3x3
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STORAGE_FORMAT =
DIMENSION_1 = 32
DIMENSION_2 = 32
DIMENSION_3 = 32
DIMENSION_4 = 64
LINK_TRACE = =3.571047985e=05
PLAQUETTE = 0.6460529819
BOUNDARY_1 = PERIODIC
BOUNDARY_2 = PERIODIC
BOUNDARY_3 = PERIODIC
BOUNDARY_4 = PERIODIC
CHECKSUM = 8d462b98
SCIDAC_CHECKSUMA = 0
SCIDAC_CHECKSUMB = 0
ENSEMBLE_ID = UKQCD
ENSEMBLE_LABEL = DWF
SEQUENCE_NUMBER = 1
CREATOR = wi t z e l
CREATOR_HARDWARE = lq1wn056 . f n a l . gov=x86_64=Linux

=3 .10 .0 =957 .21 .3 . e l 7 . x86_64
CREATION_DATE =
ARCHIVE_DATE =
FLOATING_POINT = IEEE64BIG
END_HEADER

The focus of this project is on steps 2) and 3) and we will separately give
the details for the actually provided gauge �eld con�gurations. Speci�cally
we are interested in determining observables of the gauge �eld with the details
given in the Section 2.1. On the technical side, we utilize a lattice QCD
software package named Qlua2 [7, 8]. This package provides an interface
based on the scripting language lua to highly optimized routines written in
c/c++ which are parallelized using the message passing interface
(mpi). Luckily Qlua hides almost all of these technicalities and we can
solely focus on the physics problem we like to solve.3 At the same time we
do take advantage of running a parallel program. Thus we must always
execute the program on a compute node of the OMNI cluster. After
implementing our measurement in a Qlua script, we can either submit a
batch script (job script) to the resource manager (scheduler) of the cluster
(SLURM) or we can request from the scheduler an interactive node. The
latter may be more convenient for debugging/validating but is not suitable
for running many measurements.

Next we discuss the speci�c example of calculating the average trace link

2https://usqcd.lns.mit.edu/w/index.php/QLUA
3Important: There is one pitfall to be aware of: array indices in c start with 0,

whereas in lua they start with 1. This can get tricky when calling a c function from lua.
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of a gauge �eld con�guration. Key aspects of lua's syntax are summarized
in Appendix A and Appendix B lists the most relevant SLURM commands.

1.4 Example: Calculation of the average link trace

1.4.1 Qlua script

1 package . path = package . path . . " ; . / ? . qlua "
2 r e qu i r e " s t d l i b "
3 r e qu i r e " U t i l s "
4

5 == main program
6 L = 32
7 T = 64
8 c on f i g=" . . /Two/ f2l32t64ls12b460m000_3stout_pppa/ ckpoint_lat .500 "
9

10 == Star t t iming
11 t i c = os . time ( )
12

13 == i n i t i a l i z e l a t t i c e
14 l a t t i c e , volume , rand = I n i t L a t t i c e (L ,L , L ,T)
15

16 == load gauge f i e l d in NERSC format
17 U, GaugeInfo = LoadGaugeField ( con f i g , l a t t i c e , volume )
18

19 == c a l c u l a t e average l i n k t r a c e
20 l t r = 0
21 f o r mu = 1 , #l a t t i c e do
22 l t r = l t r + U[mu ] : t r a c e ( ) : sum( ) : r e a l ( )
23 end
24 l t r = l t r / (U [ 1 ] : c o l o r s ( ) * #l a t t i c e * volume ) == normal ize
25 d i f f = ( l t r = GaugeInfo .LINK_TRACE) / l t r == c a l c . r e l . d i f f .
26 p r i n t f ( " l i n k t r a c e : %d %15.11 f %15.7 e\n" , volume , l t r , d i f f )
27

28 == Fin i sh t iming
29 toc = os . time ( )
30 p r i n t f ( "Qlua f i n i s h e d . Total time : %f sec \n" , toc=t i c )

Meas.qlua

� As in line 5, comments start with two hyphens (--) and instruction do
not need to be closed with semicolon (;) as e.g. in c. You may however
use a semicolon to put two or more instruction in one line. Strings are
enclosed using double quotes ("). The hash-operator (#) returns the
number of elements of an array which in lua has an index running
from one 1 to #array
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� Line 1 speci�es where Qlua searches for additional �les like the �le
Utils.qlua (included in line 3) which provides the routines to setup
the lattice or load a gauge �eld con�guration. The listing of the �le
Utils.qlua is shown in Appendix C

� Line 6, 7 specify spatial and temporal extent of the lattice and the
values must match the size of the gauge �eld speci�ed by the �lename
in line 8 and referred to by the variable config

� Line 14 calls the routine to initialize the lattice i.e. information is gen-
erated how to access e.g. the next neighbors at any lattice site x

� Line 17 loads the gauge �eld into the variable U and the information
from the header to GaugeInfo. Technically the gauge �eld U is an
array with an index running over all lattice sites x of the 4-dimensional
lattice volume. At each lattice site four link variables are stored corre-
sponding to the four space-time directions which we typically access by
an index µ or ν. Each link variable is an element of SU(3) i.e. a com-
plex 3× 3 matrix. The index for the site x is �hidden� and operations
act on the entire gauge �eld U. Since overloading allows to rede�ne the
+ operator for SU(3) color matrices, the link variables can straight for-
wardly be added without explicitly running over the elements of each
SU(3) matrix. Similarly - and * operators are rede�ned for SU(3) color
matrices

� The loop in lines 21-23 runs over the four space-time dimensions and
performs the parallel computation of calculating the trace of each link
variable U[mu], summing over the space-time coordinate x, and taking
the real part. By taking the trace of U[mu], we remove the color index
and instead of a matrix we have a complex number for each lattice
site. Next the :sum() operation performs a reduction over the full
4-dimensional lattice and we obtain a single complex number. Finally
:real() returns only the real part of that complex number which is
of physical relevance

� The resulting sum is normalized in line 24 where U[1]:colors()
provides the number of colors, #lattice the dimensions of the lattice
and volume the number of lattice sites

� In line 25 we calculate the relative di�erence to the value saved as part
of the header information of the gauge �eld �le accessed via the variable
GaugeInfo
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� The special printf command in line 26 and 30 ensures that the output
is only written by one mpi process and the usual syntax for formatted
output can be used

1.4.2 SLURM job script

1 #!/ bin /bash
2 #SBATCH =N 1
3 #SBATCH =p debug
4 #SBATCH ==time 00 : 10 : 00
5 #SBATCH ==tasks=per=node 64
6 #SBATCH ==e x c l u s i v e
7 Sc r i p t =./Meas . qlua # name o f s c r i p t to be executed
8

9 #################################################################
10 # r ed i r e c t output and f o r c e immediate wr i t i ng
11 exec > ${SLURM_SUBMIT_DIR}/${SLURM_JOB_NAME}=${SLURM_JOB_ID} . omni

. out 2>&1
12

13 #################################################################
14 # s t a r t tak ing the time
15 echo "# time=begin " ` date `
16 TotalTic=`date +%s `
17

18 #################################################################
19 # repor t in fo rmat ion on c l u s t e r
20 echo "========================================================="
21 echo "Running Qlua on OMNI"
22 echo "SLURM job runnning on : ` hostname ` "
23 echo " in d i r e c t o r y : `pwd ` "
24 echo "SLURM job id : ${SLURM_JOB_ID}"
25 echo "SLURM #nodes : ${SLURM_NNODES}"
26 echo "SLURM #tasks /node : ${SLURM_TASKS_PER_NODE}"
27 echo " Node f i l e : ${SLURM_JOB_NODELIST}"
28 echo "========================================================="
29

30 #################################################################
31 # load environment and s e t v a r i a b l e s f o r running Qlua
32 umask 007
33 module load i n t e l /19 . 1 . 3 . 100008_cm9.0 _f654bdadee
34 module load impi /2020.4
35 MPIrun=" srun ==mpi=pmi2 "
36 Qlua="/home/ow907254/ Software /QLUA/omni=20201002= i n t e l 1 9 . 1 . 3

_impi2020 .4/ qlua /bin / qlua "
37

38 #################################################################
39 # pr in t s c r i p t and command to be executed to the log f i l e
40 echo "=========================================================="
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41 echo " Sc r i p t : ${ Sc r i p t }"
42 echo "=========================================================="
43 cat ${ Sc r i p t }
44 echo "=========================================================="
45 echo "${MPIrun} =n ${SLURM_NTASKS} ${Qlua} ${ Sc r i p t }"
46 echo "=========================================================="
47 echo ""
48

49 #################################################################
50 # run Qlua in p a r a l l e l execut ing the s c r i p t
51 ${MPIrun} =n ${SLURM_NTASKS} ${Qlua} ${ Sc r i p t }
52

53 #################################################################
54 # repor t the time
55 TotalToc=`date +%s `
56 echo " "
57 echo "# time=f i n i s h " ` date `
58 TotalTime=$ ( ( $TotalToc = $TotalTic ) )
59 TotalHours=`echo "$TotalTime / 3600" | bc =l `
60 echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
61 echo "Total time $TotalTime [ s ec ] = $TotalHours [ h ] "
62 echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"

Test.job.sh

� Only lines 3, 4, and 7 may need adjustment!

� Line 1 speci�es that this script uses bash syntax i.e. comments start
with #. To assign a value to a variable, use the equal sign (=) without
any white space before or after �=�; only when referring to a value of
the variable, pre�x $

� Lines 2-6 starting with #SBATCH specify the resources we request from
the scheduler. Speci�cally we ask for one full node for our exclusive
usage with the intention to spawn 64 mpi tasks. Line 3 names the
partition (queue) to use, in this case debug. debug has the shortest
(wall-)time limit and smallest number of nodes. debug is solely in-
tended for testing/debugging with short turnaround times. In Line 4
we say our job will �nish within 10 minutes. If it runs longer, SLURM
will terminate it

� For production measurements changing line 3 to �-p short� and line 4
to (up to 2h) �--time 2:00:00� may be advised

� Line 7 names the Qlua script we want to run
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� Subsequent lines do not need adjustment. All lines starting with echo
simply print information to the log-�le and the comments provide fur-
ther explanations

� sbatch Test . job . sh

submits the script and you may check the queue with

squeue =u $USER

(for further comments on SLURM commands see Appendix B)

1.4.3 Running interactively on a compute node

First we need to request an interactive node from the scheduler (single line)

srun ==pty ==e x c l u s i v e =N 1 ==time =00:30:00 ==tasks=per=node 64
=p debug /bin /bash

which speci�es we want one full node of the debug partition (queue) for 30
min, using up to 64 mpi tasks, and running on it with the BASH shell. Once
we submit this request, the terminal is blocked until the resource is available.
Do check that the prompt states you are connected to a hpc-node and not
still on hpc-login. When the interactive session has started, we need to
load the software environment to run Qlua. For that execute

module load i n t e l / 19 . 1 . 3
module load impi /2020.4

and de�ne as shortcut the alias (no space around the equal sign, one line)

a l i a s Qlua="/home/ow907254/ Software /QLUA/omni=20201002= i n t e l 1 9
. 1 . 3 _impi2020 .4/ qlua /bin / qlua "

With this setup in place we can (repeatedly) execute Qlua and run our
script

Qlua . /Meas . qlua

where we assume we are in the directory of the �le Meas.qlua. The output
will only be printed on the screen (stdout). If the program hangs or is
not doing what you want, hit CTRL-C to terminate it. By just executing
Qlua the code will be slow and only run on one processor. That option
typically gives you the most useful error messages when seeking a bug which
terminates the script. To run on more processors (up to 64 on a single node)
pre�x mpirun -n followed by the number of tasks (1, 2, 4, 8, 16, 32, or 64)
and then run your script i.e.

mpirun =n 64 Qlua . /Meas . qlua

Each time you start a new interactive session, the speci�ed modules must be
loaded and the Qlua variable de�ned to use the shortcut.
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2 Gauge �eld observables (day 2)

2.1 Implement gauge �eld observables

2.1.1 Plaquette (1× 1 Wilson Loop)

The smallest closed path on the lattice is called a plaquette (see Fig. 2)
which de�nes the plaquette variable Px,µν at a lattice site x in the µ-ν plane

Px,µν ≡ Ux,µU(x+aµ̂),νU
†
(x+ν̂),µU

†
x,ν . (19)

As indicated by the directions of µ and ν in the lower left corner of Fig. 2, the
gauge links are oriented in the forward/upward direction. However, to close
the loop at least one link needs to be included which runs in the opposite
direction. In such cases we need the adjoint link indicated by †.

<

>

>

<

■ ■

■ ■

x x+ aµ̂

x+ aν̂

→ µ↑
ν

Figure 2: Sketch of plaquette at lattice site x in directions µ and ν. The
colors of the link match the terms of the r.h.s. in Eq. (19).

Tasks: Calculate the average plaquette for a given gauge �eld con�gura-
tion taking the trace over the color indices and summing over all plaquettes
i.e. calculate

P =
∑
all

plaquettes

Tr{Px,µν}. (20)

Only the real part has a physical meaning and the resulting value should be
normalized such that the value of the average plaquette can take values from
0 to 1. Quote the following values:

� �world� (average of plaquettes in all four directions)

� �space-like� (plaquettes with space-like directions only)
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� �time-like� (plaquettes along the temporal direction)

Question: Why is it mathematically irrelevant where you start calculating
the plaquette or in which direction you go around the links?
Hints:

� To get the adjoint link U †
x,µ, use the syntax

U[mu ] : ad jo in ( )

� Accessing the link from a next neighbor relative to the site x is done
using the syntax

U[ nu ] : s h i f t (mu, " from_forward" )

In this example, we grab the link for the direction ν at the site x+ aµ̂
i.e. moving from x one step forward in the direction of µ. When
using µ for a shift, the index runs from 0 to 3, whereas when
accessing the elements of U[mu] it runs from 1 to 4. In the �rst
case the index acts using a function written in c, while in the latter
case the index operates on a �eld de�ned in lua

� To validate your code for the �world� plaquette of a given gauge �eld
con�guration, you may cross-check the value you calculated against
the one recorded as part of the header information of the �le you are
reading

� When looping over all four space-time directions consider that each pla-
quette is a 2-dimensional quantity (potential issue of �double-counting�)

� To sort out the normalization, you may calculate the average of a unit
gauge �eld which you can create by using

r e qu i r e "gauge" == to be added at the top
U = {}
f o r i = 0 , #l a t t i c e = 1 do

U[ i +1] = toSUn( l a t t i c e : ColorMatrix ( complex (1 , 0 ) ) )
end

� To get average space-like and time-like plaquettes right, consider a
small 4-dimensional lattice and count how many plaquettes in space-
like and time-like directions exist. What do you expect to obtain for
the sum of space-like and time-like plaquettes?
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2.1.2 Rectangle (2× 1 Wilson Loop)

The planar 2 × 1 and 1 × 2 rectangles (see Fig. 3) are the next larger and
similarly simple Wilson Loops after the plaquette.

Tasks: Write down mathematical equations de�ning the 2 × 1 and 1 × 2
rectangle R2×1

x,µν and R1×2
x,µν , respectively. Implement both rectangles choosing

<

> >

< <

>

■ ■ ■

■ ■ ■

x x+ aµ̂ x+ 2aµ̂

x+ aν̂ x+ aµ̂+ aν̂

→ µ↑
ν

Figure 3: Sketch of the 2× 1 rectangle in directions µ and ν.

a normalization consistent with the one for the plaquette. Calculate the
average values R2×1 =

∑
all

rectangles
Tr{R2×1

x,µν} and R1×2 =
∑

all
rectangles

Tr{R1×2
x,µν}

for a given gauge �eld con�guration again quoting values for

� �world� (average of rectangles in all four directions)

� �space-like� (rectangles with space-like directions only)

� �time-like� (rectangles along the temporal direction)

Question: Without double counting, how many 2× 1 and 1× 2 rectangles
exist? Does the answer depend on the number of space-time dimensions?
How do their numbers compare to the number of plaquettes?

2.1.3 Testing gauge invariance

Plaquette, rectangle, clover operator, and Polyakov loops are all gauge invari-
ant quantities � in contrast to e.g. the average link trace used as introductory
example in Sec. 1.4. Hence we can perform certain symmetry transforma-
tions on the gauge �eld without changing the values of such gauge invariant
quantities.

A simple (trivial) transformation is to shift the origin of the lattice by
a 4-vector. This can be done using the function translat where the shift
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is speci�ed by the variable xvec. To test translational invariance, add the
following two lines

xvec = {13 ,9 ,4 ,37}
U = t r an s l a t (U, xvec )

right after loading the gauge �eld and before doing any calculation.
Questions: Can you con�rm that this does not change the results? Next
apply a non-trivial gauge transformation by multiplying an SU(3) matrix to
the gauge �eld U using the function gauge_transform_U

l o c a l g = l a t t i c e : ColorMatrix ( 1 . 0 )
g = g : pro j (1 e=8 ,150)
U = gauge_transform_U (g , U)

and check how that changes the values of the observables.

2.1.4 Polyakov Loop

Exploiting the periodic boundary conditions of the gauge �eld, we can de�ne
the Wilson loop with the largest extent in one direction. In the temporal
direction this quantity is also referred to as the thermal Wilson line. Con-
sidering this largest loop in all four space-time directions, we generally refer
to it as Polyakov loop i.e. we are interested in the quantity

Plµ = Tr

{
Lµ−1∏
k=0

Uµ

}
with Lµ = (L,L, L, T ). (21)

Tasks: Implement and print both the real and the imaginary part of the
average Polyakov loop for all four space-time directions. For simulations in
the con�ned phase the expectation value ⟨Plµ⟩ is expected to be zero, whereas
it is nonzero for simulations in the decon�ned phase.

2.2 Run measurements

Only after validating the code with the supervisor, you are ready
to start a larger scale lattice calculation using all of the provided
gauge �eld con�gurations. Please do not call the translat or
gauge_transform_U function for the so called production run.

Modify the SLURM job script and the Qlua measurement script to loop
over several con�gurations within one job. Take care of organizing the output
such that you can �easily� and robustly extract the measurement values from
log-�les written to stdout.
Tasks: Please include a description of how you organized the output and
post-processing in your report.
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Hint:
Powerful and maybe useful command line tools are grep and awk.

2.3 Statistical data analysis

Perform a statistical data analysis for the plaquette and rectangle observ-
ables.
Tasks:

� Create history plots of the quantities vs. the Monte Carlo time (con-
�guration number)

� Show a histogram for these observables and obtain mean values with
their statistical errors

� Try to estimate e�ects of autocorrelation by binning subsequent mea-
surements

� A statistical analysis for the Polyakov loops is likely not suitable. Here
however it is interesting to make a scatter plot showing the real part on
the horizontal and the imaginary part on the vertical axis overlaying the
four di�erent directions using di�erent colors/symbols. Can you decide
whether the provided con�gurations are in the con�ned or decon�ned
phase of QCD?

� Please make sure to report results for both data sets provided
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3 Gradient �ow scale setting (day 2)

Before we move on and use the previously implmented gauge �eld observables
to determine the gradient �ow (GF) scale

√
t0/a, we �rst discuss implement-

ing another observable, the clover operator Cµν(x). Subsequently, we discuss
the gradient �ow and describe how to determine the lattice scale from it.

3.1 Implement the clover operator

<

>

<

>>

>

<

<

>

>

<

< <

>

<

>

■ ■

■ ■

■ ■■

■

■

xx− aµ̂ x+ aµ̂

x+ aν̂

x− aν̂
→ µ↑
ν

Figure 4: Sketch of clover operator for lattice site x in the µ-ν plane.

Figure 4 shows a sketch for the Sheikholeslami-Wohlert or clover operator
at lattice site x which is given by the sum of the four di�erent plaquettes at
lattice point x in the µ-ν plane. The anti-Hermitian and traceless part of the
average clover operator Cµν(x) can be used to obtain a lattice de�nition of
the �eld strength tensor Gµν(x). Calculating Gµν(x) on the entire lattice,4

4Note, that calculating Gµν(x) for all x in the µ-ν plane requires to take all loops with
the same orientation.

20



lets us de�ne the energy density E

E =
1

4
Ga

µνG
a
µν , (22)

which is proportional to the gaugecoupling g2.
Tasks:

� First write down the corresponding mathematical expression to deter-
mine the clover operator Cµν(x) in terms of the link variables Ux,µ. How
many �hops� to neighbors of x do you need to get all links? (Fewer hops
is better.)

� The anti-Hermitian and traceless part of Cµν(x) de�nes the lattice �eld
strength tensor Gµν(x) which we want to use to calculate the energy
density E. Detail how you plan to obtain E from Cµν(x).

� Implement the above described energy density E to determine the aver-
age for a given gauge �eld con�guration. (Just determining the �world�
energy density is su�cient.)

3.2 Determine the lattice spacing a

For simulations in the con�ning phase of QCD we can determine the lattice
spacing a. One option is to use a gradient �ow method [9, 10]

d

dt
Bµ(x, t) = −∂SYM(B)

∂Bµ(x, t)
with Bµ(x, t)

∣∣∣∣
t=0

= Aµ(x). (23)

In Eq. (23) we introduced a new parameter, the �ow time t which has mass
dimensions [-2]. Further we de�ne the Lie Algebra valued �eld Bµ(x, t) which
compared to the gluon �eld Aµ has an additional dependence on the �ow time
t. By numerically integrating Eq. (23) for some speci�c Yang-Mills gauge
action SYM using the �un�own� gluon �eld Aµ as initial value, each gauge

�eld con�guration U (i) is expanded into a sequence of gauge �elds V
(i)
t along

the �ow time t. The gradient �ow acts thereby as a smoothing procedure
gradually removing UV �uctuations. By measuring a quantity related to the
energy density E, we can then study its �ow time dependence and deduce a
lattice scale [11]. Practically we calculate for each �ow time t the expectation
value ⟨E(t)⟩ over the sequence of gauge �eld con�guration. By forming the
dimensionless product t2⟨E(t)⟩ we obtain a quantity which is proportional
to the gauge coupling

g2GF (t;L, β) =
128π2

3(N2
c − 1)

⟨t2E(t)⟩. (24)
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(t/a)2

t2
⟨E

(t
)⟩

0.3

t0/a
2

Figure 5: Sketch showing the determination of the Wilson �ow scale
√
t0/a

using t2⟨E(t)⟩.

The constants in Eq. (24) are chosen to match for Nc = 3 the perturbative 1-
loop result in the MS scheme [11]. The �ow time t for which t2⟨E(t)⟩ reaches
a speci�c value �nally de�nes our lattice scale.

In practice we use SYM = SW , the Wilson gauge action, and measure the
energy density using the plaquette or the clover operator. The Wilson �ow
scale

√
t0/a is de�ned by [11]{

t2⟨E(t)⟩
}
t=t0

= 0.3, (25)

and we show a sketch of the t0 determination using t2⟨E(t)⟩ data in Fig. 5.
While we draw a continuous line for t2⟨E(t)⟩ as a function of the �ow time
t, the �ow time t is necessarily a discrete variable incremented in steps of ε.
Choosing 0.01 ≤ ε ≤ 0.04 is appropriate for this project.

√
t0/a is a lattice

scale i.e. it is given in lattice units a. We can convert it to a physical length
scale [fm] by using its continuum limit value determined e.g. in [12]

√
t0 = 0.1528 fm. (26)

To use the Wilson �ow implementation in Qlua add the following de�-
nitions to the top

r e qu i r e "gauge"
r e qu i r e " qcd l i b / gradient=f l ow "

== Flow parameters
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eps = 0.04
f_steps = L*L/64/ eps ;
== Action parameters f o r Wilson
act_params = { plaq1 = 3 .0 }
== bu i ld f o r c e and ac t i on func t i on s from act i on parameters
g_force = qcdLib . GaugeLoops . f low_force ( act_params )

and then run a loop

V = U
fo r i = 1 , f_steps do

V = qcdLib . GradientFlow . f low ( g_force , V, eps )
monitor_flow ( i , eps , i * eps , V)

end

where you need to provide the function monitor_flow. The indicated
arguments name the integer step i, the step-size ε, the �ow time t = i · ε, as
well as the ��own� gauge �eld V .

Question: Why is it important to calculate for a given µ-ν plane all pla-
quettes of the clover operator using the same orientation?
Tasks:

� Validate you determination of the energy density using the clover op-
erator with your supervisor without using gradient �ow.

� Implement the function monitor_flow to perform the measurements
of the gauge �eld observables on the gauge �eld V and print the result
together with the integer step number i as well as the �ow time t = i ·ε.

� Test your implementation on one gauge �eld con�guration and check
that the walltime-limit is su�cient to complete the measurements.

� Run your gradient �ow measurements for all gauge �eld con�gurations.

� The analysis proceeds as before by calculating the mean of t2⟨E(t)⟩ and
its error to create a plot showing t2⟨E(t)⟩ vs. t/a2 (standard statistical
error analysis).

� By �nding the value of t2⟨E(t)⟩ = 0.3, you can read o� t0/a
2 and

deduce the Wilson �ow scale
√
t0/a (see sketch in Fig. 23). Explain

how you obtain the statistical error on
√
t0/a?

� The determination of ⟨E(t)⟩ can be done using di�erent operators to
estimate the energy density. Compare how the results di�er when using
the plaquette compared to the clover operator.

� Use the provided reference value (Eq. (23)) to convert the lattice scale
into physical units [fm].
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A lua

� Comments

==s i n g l e l i n e comment
==[[

multi=l i n e comment
] ]

� Variables
Variables do not require a type de�nition and values are assigned using
the equal sign (=). Similarly standard arithmetic operations +, -,

*, / are de�ned. To concatenate strings use two dots (..)

l o c a l s t r i n g = "part1 " . . " part2 "

The scope of a variable can be explicitly limited by �rst declaring it
with local. Also the standard relational operations are available:
equal (==), not equal (∼=), greater (>), greater equal (>=), less
equal (<=), less (<) complemented by the logical operators and, or,
not

� Loops

whi le <cond i t i on> do
end

f o r i = s ta r t , end , s tep do
== i f s t ep i s omitted , s tep=1 i s used

end

f o r k , v in pa i r s ( tab ) do
end

repeat
un t i l <cond i t i on>

� Conditions

i f <cond i t i on> then
p r i n t f ( " yes " )

e l s e i f <cond i t i on> then
p r i n t f ( "maybe" )

e l s e
p r i n t f ( "no" )

end
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� Functions

f unc t i on myFunction ( )
re turn 1

end

func t i on myFunction (a , b)
re turn a + b

end

B SLURM

The ZIMT website https://cluster.uni-siegen.de/omni/usage/
slurm/?lang=en has a detailed list of the various SLURM commands. Most
relevant are properly:

� sinfo with option -ls reports a compact overview of the resources
and the de�ned partitions (queues), whether the partition is available
and what its maximal (wall-)time limit is as well as the number of
nodes in the di�erent states. A: allocated, I: idle, O: other (not
available), and T: total. As can be seen in the last column, nodes can
be assigned to more than one partition. Qlua is compiled for running
on hpc-nodes only.

s i n f o = l s
Sun Jul 11 11 : 03 : 15 2021
PARTITION AVAIL TIMELIMIT NODES(A/ I /O/T) NODELIST
debug up 1 : 0 0 : 0 0 0/5/0/5 hpc=node [001=005]
gpu up 1=00:00:00 1/9/0/10 gpu=node [001=010]
htc up 1=00:00:00 0/41/0/41 htc=node [001=041]
long up 20=00:00:0 85/4/8/97 hpc=node [338=434]
medium up 1=00:00:00 385/16/28/429 hpc=node [006=434]
shor t * up 2 : 0 0 : 0 0 232/12/12/256 hpc=node [006=261]
smp up 1=00:00:00 0/2/0/2 smp=node [001=002]

� sbatch submits a job-script. Options can be provided on the com-
mand line or using #SBATCH instructions as discussed for lines 1-6 of
the run script in Sec. 1.4.2

� squeue reports all jobs the scheduler is currently managing. To get a
list of only your jobs use

squeue =u $USER

where the environment variable $USER is by default equal to your
username on OMNI
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C Utils.qlua

1 f unc t i on I n i t L a t t i c e (X,Y, Z ,T)
2 == i n i t i a l i z e s l a t t i c e and random s t a t e
3 l o c a l l a t = qcd . l a t t i c e {X,Y,Z ,T}
4 l o c a l vo l = 1
5 l o c a l i
6 f o r i = 0 , #l a t = 1 do
7 vo l = vo l * l a t [ i ]
8 end
9 == I n i t i a l i z e the random s t a t e from the system source

10 l o c a l r = { }
11 l o c a l rand
12 do
13 r . x = os . random ( )
14 l o c a l x = l a t : Int ( r . x )
15 f o r i = 0 , #l a t = 1 do
16 r [ i +1] = os . random ( )
17 x = x * l a t [ i ] + l a t : pcoord ( i ) * r [ i +1]
18 end
19 r . f = os . random ( )
20 p r i n t f ( " I n i t i a l i z i n g random s t a t e \n" )
21 rand = l a t : RandomState ( r . f , x )
22 end
23 re turn la t , vol , rand
24 end
25

26 == ============================================================

27 f unc t i on LoadGaugeField ( fname , la t , volume )
28 l o c a l U
29 l o c a l i n f o
30

31 U, i n f o = qcd . ner sc . read_gauge ( la t , fname ,
32 { un i t a r i t y =1.23e=7, FLOATING_POINT="IEEE64BIG"})
33

34 p r i n t f ( "\n\nHEADER of %s \n" , fname )
35 l o c a l i
36 l o c a l v
37 f o r i , v in pa i r s ( i n f o ) do
38 i f i == 'CHECKSUM' then
39 v = s t r i n g . format ( "%x" , v )
40 v = s t r i n g . sub (v , 9 , =1)
41 p r i n t f ( " %=20s [ number ] %s \n" , t o s t r i n g ( i ) , v )
42 e l s e
43 p r i n t f ( " %=20s [%s ] %s \n" , t o s t r i n g ( i ) , type (v ) ,
44 t o s t r i n g (v ) )
45 end
46 end
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47 p r i n t f ( "\n" )
48 re turn U, i n f o
49 end
50

51 == ============================================================

52 f unc t i on t r a n s l a t ( Utrans , xvec )
53 l o c a l tmp = {}
54 l o c a l n , d i r , length , j
55 p r i n t f ( " s h i f t l a t t i c e by vec to r [ " )
56 f o r n = 0 , #Utrans=1 do
57 d i r = n
58 l ength = xvec [ d i r +1]
59 p r i n t f ( "%d " , l ength )
60 i f l ength > 0 then
61 f o r mu = 1 , #Utrans do
62 f o r j = 1 , l ength do
63 tmp [mu] = Utrans [mu ] : s h i f t ( d ir , " from_forward" )
64 Utrans [mu] = tmp [mu]
65 end
66 end
67 end
68 end
69 p r i n t f ( " ] \ n" )
70 re turn Utrans
71 end

Utils.qlua
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