
8 Determination of Layer Thiknesses of SingleLayers and Multilayers
The measurement of layer thikness is a basi problem, and an be solvedboth by x-ray reetion and x-ray di�ration (see [121℄ for a review). In bothmethods, the thikness of a thin layer an be determined from the angularpositions of the subsidiary maxima on the reetion (or di�ration) urves.In a reetivity urve, these maxima are aused by the interferene ofthe waves reeted from the upper and lower interfaes of the layers. Thisphenomenon is equivalent to the interferene fringes that an be observedwith visible light, known as Pohls interferene pattern [128℄. The visibilityof this interferene e�et depends substantially on the reetivities of bothboundaries, i.e., on the di�erenes in the x-ray refration indies above andbelow the boundaries and on the interfae roughnesses. In the x-ray region,the latter fator is espeially important sine, as we show later, even a very�ne roughness on the nanometer sale gives rise to a onsiderable derease ininterfae reetivity.The range of the layer thiknesses that an be measured by x-ray ree-tometry depends on the intensity and divergene of the primary beam, on theangular resolution, and on the total angular range of the goniometer used, aswell as on the wavelength � (see Chap. 2).As we show later, in the ase of a single layer of the thikness T , thedistane between the adjaent interferene maxima is given byÆ�i = G �2T ; (8.1)where G is a geometry fator, whih is unity for x-ray reetivity. Therefore,the primary-beam divergene and/or the angular resolution of the di�ra-tometer determines the upper limit of the measurable thikness T . If, forinstane, the divergene of the primary beam is 0.01Æ and � = 0:15405 nm(CuK�1 line), the maximum measurable layer thikness is smaller than about0.43 �m. The lower limit for thikness analysis is given by the aessible an-gular range, i.e., in fat, by the maximum inidene angle �i that yields ameasurable reetivity. Therefore, the minimum layer thikness whih an bedetermined, depends on how many deades of intensity are aessible by theexperiment. For instane, the determination of a layer thikness of 1.5 nmrequires measurements up to �i = 3Æ at least.



144 8 Determination of Layer Thiknesses of Single Layers and MultilayersThe subsidiary maxima on the di�ration urve of a layered sample anbe explained as a result of interferene of the beam di�rated by the layer (orlayers) with the beam di�rated by the substrate. The distane of the adja-ent maxima depends on the layer thikness aording to a formula similar toEq. (8.1), where the value of the geometrial fator G an di�er from unitydepending on the di�ration asymmetry. The sattering ontrast of the inter-ferene maxima depends mainly on the di�erene between the polarizabilityoeÆients �h of the layer and the substrate and on the lattie mismathbetween layer and substrate. For the latter ase the thikness determinationis not straightforward and requires omputer simulation.In this hapter we will desribe the possibilities for determining the layerthikness in single-layer and multilayer strutures by x-ray reetometry anddi�ration measurements. On the basis of the general theory formulated inSet. 6.5, we will demonstrate the dependene of the positions of the intensitymaxima on the reetion (di�ration) urves on the layer thiknesses and wewill disuss the inuene of the inhomogeneities of the layer thikness onthese urves.8.1 X-Ray Reetion by Single LayersFrom general dynamial formulae (6.14), (6.39) we an derive the followingexpression for the reetivity of a single layer deposited on a semi-in�nitesubstrate:R = ���� r1 + r2e�2ik0zT1 + r1r2e�2ik0zT ����2 ; (8.2)where r1;2 are the Fresnel reetivity oeÆients of the free surfae and thesubstrate interfae, respetively, k0z is the vertial omponent of the wavevetor of the beam transmitted through the layer, and T is the layer thik-ness. From this formula it follows that in an angle-dispersive experiment theintensity maxima appear whenever exp(�2ik0zT ) = 1, this means at anglepositions �im. This ondition an be expressed by2Tqsin2 �im � sin2 � = m�; (8.3)where m is an integer, sin� =p2(1� n) and � is the ritial angle of totalexternal reetion of the layer and n is the layer refrative index. Eq. (8.3) isanalogous to the Bragg equation but modi�ed by the inuene of refration.The appearing thikness fringes are alled Kiessig fringes, in honor of theirdisoverer [193℄.Sine, in most ases, the inidene angle �i is suÆiently small, Eq. (8.3)has the following approximative form:�2im � �2 = m2� �2T �2 : (8.4)



8.1 X-Ray Reetion by Single Layers 145This relation shows a simple method to determine the layer thiknessfrom the measured reetivity urve. One plots the squares of the angularpositions of the intensity maxima versus the squares of the Kiessig fringeorder. In the range of validity of Eq. (8.4) it gives a straight line with thelayer thikness T as parameter. From the intersetion point of this straightline with the ordinate one obtains the ritial angle � of the layer material,and, onsequently its refrative index.
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Fig. 8.1. X-ray reetivity urve of BN oated onto silion substrate reorded asa funtion of the detetor angle 2�i. �1 is the ritial angle of the layer; �2 thatof the substrate. The numbers denote the fringe order m. The inset shows the plot�2i versus m2, whih gives a layer thikness of T = 95� 1 nm.Figure 8.1 shows a reetivity urve of a BN layer deposited on a silionsubstrate. It was measured by means of a powder x-ray di�ratometer intro-dued in Chapter 2.4 using � = 0:154 nm. The reeted intensity is reordedover six orders of magnitude. This orresponds to 2�i � 6:0Æ.For intensity reasons and to improve the angular resolution, the low an-gle region between 0 < 2�i < 2� was measured with the highest angularresolution possible, what is determined by a step width of Æ�i = 0:001Æ anda width of the inident beam of 0.05 mm. A ounting time of 2 seonds perangular step was suÆient for good ounting statistis. For larger �i the slitwidth and the ounting time were inreased to 0.5 mm and 30 to 60 seonds,respetively. As is visible in Fig. 8.1 the intensity inreases slightly for �i < �and drops very rapidly if �i exeeds �. The �rst dependene is governed bythe illumination orretion (see later).



146 8 Determination of Layer Thiknesses of Single Layers and MultilayersBeyond � the reeted intensity is proportional to ��4i as follows fromthe kinematial formula (5.17). This drop is modulated by the interfereneof the x-ray beam reeted at the upper and lower boundaries of the layer.Furthermore, there are two di�erent frequenies of osillations. The high fre-queny is a measure of the thikness of the sputtered BN layer, and the lowfrequeny is that of the native SiO2 overing the silion substrate. The layerthikness T of the BN is obtained from the angular distane between theosillation maxima aording to (8.4). This is demonstrated in the inset ofFig. 8.1 using the third to eleventh Kiessig maximum of the reetion urve.Its graphial evaluation gives T = 95 � 1 nm. The extrapolation to m = 0gives �21 � 10�5, whih represents a rough estimate of the average eletrondensity of the layer. �2 orresponds to the density of the silion substrate(see below). Extrated from the long-range beating of the reetivity urve,the thikness of the SiO2 layer amounts to 3:4� 0:4 nm. Note that this layerbeomes visible only if the reetivity urve has been reorded over morethan �ve orders of magnitude.Expressed in reiproal spae, Eq. (8.3) looks muh simpler:T = 2��QzT : (8.5)That means T an be measured from a di�erene of the sattering vetorsinside the rystal (i.e., orreted for refration).The auray of the thikness determination depends on the smallest an-gular step Æ�i of the goniometer and on the layer thikness T . Negletingrefration the auray an be estimated from�TT = ��i�i � �immax : (8.6)This auray is of the order of 1% if the osillation maximum measured at�i = 1Æ is determined with an auray better than ��i = 0:01Æ. Eq. (8.6)an be expressed also in terms of the largest fringe ordermmax that is detetedin the reetivity urve with an auray of one-half of a fringe period. Inthe example shown in Fig. 8.1 one �nds mmax = 45 at 2�i � 5:0Æ. In thisase the layer thikness t is determined with a relative error of �TT � 2%.The auray of the layer thikness an be preserved as long as a suÆientnumber of fringe maxima appear within the detetable angular interval, i.e.,if T is suÆient large. Owing to the ��4i dependene, the reetivity of thesilion substrate dereases to R = 2� 10�4 at 2�i = 2Æ and to R = 5� 10�5at 2�i = 3:0Æ. Considering the low ounting statistis at large angles, thethikness annot be estimated with an auray better than 1% in pratialases. A dynamial range of up to ten orders of magnitude is required in orderto detet one single fringe period orresponding to the thikness of a singleatomi layer (T � 0:3 nm). Suh dynamial range annot be realized underommon laboratory onditions, it requires synhrotron radiation . Nowadays,a dynami range of seven to eight orders of magnitude is available usingmodern home laboratory equipment (see Set. 2.1).



8.1 X-Ray Reetion by Single Layers 147However, using a low-power x-ray soure, a rough estimate of the layerthikness of a very thin layer an be determined exploiting the small-anglepart of the reetivity urve, in partiular the angular position of the �rstosillation minimum [382℄.The eletron density of the material an be determined by measuring theritial angle of total external reetion �. From theory (see Chap. 6) onewould expet the reeting intensity to remain onstant between 0 < �i < �.That is not the ase in experiments: as seen in Fig. 8.1, the intensity inreaseswithin this angular range. For a given beam width, bbeam, and a very small�i, the projetion of the inoming beam onto the sample surfae, Abeam,an exeed the sample size, Asample (see Fig. 8.2) . Under this ondition thereorded intensity depends on the ratio bsample=bbeam and has to be orretedby I = Imeas � sin(�i) for AsampleAbeam < 1andI = Imeas for AsampleAbeam � 1 : (8.7)The partiular angle �i, where Asample=Abeam = 1, depends on the samplesize and the slit width bbeam de�ning the beam in front of the sample. Bothparameters have to be de�ned for eah sample under investigation. A orret
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Fig. 8.2. Illumination of a terminated sample area while sanning the reetivityat very small �i.determination of � is not straightforward. As long as absorption is negligibleand the sample is in�nitely large, � is that value of �i where the reetingintensity I is dereased to 50% ompared of the maximum intensity Imax = 1.In this ase Imax orresponds to the inident beam intensity I0 measured at�i = 0. For �nite-sized samples and highly absorbing materials Imax is alwayssmaller than unity and � appears at an intensity smaller than 50% (see Eq.



148 8 Determination of Layer Thiknesses of Single Layers and Multilayers(8.7)). This problem beomes signi�ant if the eletron density of the layeris lower than that of the substrate and if the layer is thin. Then two ritialangles may appear: one belongs to the layer and a seond one, at slightlylarger �i, orresponds to the substrate. This has already been illustrated inFig. 8.1.Generally the average eletron density %el an be determined using therelation� = p��0; (8.8)whih results in%el = ��2�2rel : (8.9)Instead of %el the mass density %m is often of interest. These two densitiesare onneted by%m = %elANAZ ; (8.10)where rel is the eletron radius de�ned in Set. 5.1, Z is the atomi number, Ais the mass number and NA is the Avogadro onstant. Figure 8.3 shows three
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8.1 X-Ray Reetion by Single Layers 149at 0.22Æ, there is a seond � whih belongs to the organi �lm. This smallerritial angle dereases with an inrease in the number of monolayers, dueto the inreasing number of defets within the layer. For the 20{monolayersample, for example, � = 0:18Æ orresponds to an eletron density of %el =4:6� 1023 m�3, i.e., a mass density of %m = 1:54 gm�3. The density valuesof the silion substrate are 6.99�1023 m�3 and 2.32 gm�3, respetively. Adensity determination by eye is not possible if the layer density is lose to thatof the substrate or if the layer is very thin. The latter reason is evident in thebottom urve of Fig. 8.3. Here, the layer density an only be extrated usingomputer simulation. In that partiular example, the dereasing density ofthe layer is aused by the inomplete layer overage on the substrate whihdereases with the number of transferred layers [353℄.For an approximate determination of %el, we reommend measuring thereetivity urve in the angle range 0 � �i � 1:5 � � using the smallestpossible step width of the goniometer Æ�i and �nd � at the angle positionwhere I(�i) = Imax=2. Using Æ�i � 0:001Æ, the auray of the densitydetermination may be estimated as�%=% = 2Æ�i� � 0:01 ; (8.11)whih is suÆiently preise for many tehnologial appliations. This proe-dure works well if the rotational axis of the sample irle is aligned exatlyat the sample surfae (see Set. 2.1).
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150 8 Determination of Layer Thiknesses of Single Layers and MultilayersThe following examples will illustrate some problems one may enounterwhile studying extremely thin layers. Figure 8.4 shows the reetivity urveof a thin antimony layer grown epitaxially on GaAs (110) . This urve wasreorded using a reetometer with low angular resolution. It demonstratesthe limit of layer thikness estimation made by eye. The eletron densityof antimony is about 15% larger than that of GaAs. Therefore the ritialangle of the layer is larger than that of the substrate and it is not visible.At larger angles a single fringe minimum and maximum are visible above thebakground, the shape of the osillation is asymmetri. A omplete �t of thereetivity urve whih onsiders the experimental resolution funtion givesTSb = (4:0� 0:5) nm, an interfae roughness of � = 0:5 nm and a refrationindex n � 1 � Æ with ÆSb = 1:65 10�5. The interfae roughness was treatedaording to Set. 11.3. Additionally one has to onsider a seond layer withslightly redued density (Æ = 1:05 10�5) on the top of the antimony. Itsthikness is about T = (2:8� 0:5) nm, and it orresponds to mirorystallineaggregates aused by the transition of the two-dimensional into the three-dimensional growing mode during preparation.
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8.1 X-Ray Reetion by Single Layers 151This exat data evaluation is in ontrast to a rough estimate by eye.Here one an suppose a single-layer model. Using the fringe minimum at�i = 0:76Æ, one get a thikness of T = (9 � 1) nm, whih is larger thanthe sum of both layers determined above. Naturally this model does notreprodue the observed fringe asymmetry [144℄.The lower limit for the determination of a thin surfae layer an be es-timated measuring the native oxide of a silion wafer. Figure 8.5 shows thereetivity urve of a lean silion surfae measured with a home reetometersimilar to Fig. 2.1 using � = 0:154 nm. The experimental urve is quite simi-lar to that one whih an be measured with synhrotron radiation [167, 356℄.Only the large dynamial range of about eight orders of magnitude makesit possible to identify the native oxide. The measured angular position of �orresponds to the silion mass density of %m = 2:32 g/m3. At higher �i theintensity derease is modulated due to the existene of a very thin surfaelayer. At the angular position of the destrutive interferene the reetingintensity is about 10�7. Under irumstanes of a limited dynamial rangethe reetion urve would probably have been misinterpreted by a lean sur-fae only. Here one learly an identify the existene of the native oxide. Theminimum at 2�i � 4:8Æ orresponds to a thikness of Ttop = 1:0 nm. Thefull �t of the reetivity urve supplies additional parameters, i.e., the massdensity of the top layer(%m = 1:7 g/m3) and the interfae roughnesses ofthe SiO2 surfae and the SiO2-Si interfae, whih are �Si = 0:15 nm and�SiO2 = 0:35 nm, respetively. Furthermore the �t requires onsideration ofa gradual hange of the density from the top layer down to the pure sili-on. This reets the property of SiO2 to protet the silion against furtheroxidation.After the substrate has been haraterized, the layers on top of it an beinvestigated. This an be a thin organi �lm, as shown in Fig. 8.6. The layeronsists of lipids(l-1,2-dipalmitoylphosphatidi aid { DPPA) attahed topolyeletrolyte moleules (poly-diallyldimethylammonium hloride { PDAD-MAC). Both have been transferred onto a silion substrate by means of theLangmuir-Blodgett tehnique. The main problem here is the low density dif-ferene between the moleular sub-units. Both lipids and polyeletrolytesonsist of arbon and hydrogen atoms. The only di�erene is the moleulararrangement whih is laterally ordered in the ase of the lipids but ratherrandom for the polyeletrolyte moleules. The reetivity urve has to bereorded over eight orders of magnitude to yield suÆient struture infor-mation (Fig. 8.6). As shown in the inset, the data evaluation does not resultin a unique eletron density distribution. Assuming either a two-layer or afour-layer model, one annot deide whether the polyeletrolytes built thesub-layer with larger or smaller thikness ompared to the lipid layers [271℄.This ambiguity is a onsequene of the phase problem of rystallography.Similar information an be obtained using the energy-dispersive set-up(see Set. 2.1). Instead of the angular oordinate the intensity varies as a



152 8 Determination of Layer Thiknesses of Single Layers and Multilayers
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154 8 Determination of Layer Thiknesses of Single Layers and MultilayersLet us assume a multilayer being reated by N periods, eah onsistingof a layer A with a thikness TA and the refration index nA = 1 � ÆA andthe layer B (TB ; nB = 1 � ÆB); the multilayer period is D = TA + TB . Wedenote the appropriate phase fators of layers A and B by�S = e�ikSz TS ; S = A;B;where kSz is the z-omponent of the wave vetor of the transmitted wave inthe layer of type S. For the Fresnel reetion oeÆients of the A{B and B{Ainterfaes, the relationrBA = �rABholds, i.e., the amplitude of the reetion originating from the interfae A{B is opposite that of the interfae B{A. Using the matrix expression (6.37)and negleting all the terms ontaining the seond and higher powers of theFresnel reetivities, the reetivity of the periodial multilayer isR = ��r0A + rAB ��2A � �2A�2B + �2A�2B�2A � � � �� � �+ (�2A�2B)N�1�2A�+ rBS(�2A�2B)N ��2 ; (8.12)where r0A and rBS are the Fresnel reetion oeÆients of the free samplesurfae (interfae between the vauum and layer A) and the substrate sur-fae (interfae between layer B and the substrate). The sum (in the squarebrakets) an be evaluated, and we obtainR = ���r0A + rAB�2A�2B(�2A�1)(�2A�2B)N�1+�2B�1(�A�B)2�1 ++rBS(�2A�2B)N ��2 : (8.13)Using the SRA it is straightforward to derive parameters whih haraterizethe multilayer struture. Several of these parameters an simply be extratedfrom the experimental reetion urves and an be used as an input for the�tting of the experimental reetion urves by means of full dynamial theoryaording to Eq. (6.37).First, let us onsider the seond term on the right-hand side of formula(8.13). A maximum of this term ours if(�A�B)2 = 1;i.e., forkAz TA + kBz TB = �m;where m is an arbitrary integer. Now we introdue the averaged z-omponentof the wave vetor:hkzi = kAz TA + kBz TBD ;



8.2 X-Ray Reetion by Periodial Multilayers 155making an angle h�ti with the internal surfae normal. The ondition for areetivity maximum is2Dhni sinh�ti = m�; (8.14)where hni is the average refrative index of the multilayer or, using the angleof inidene,2Dqsin2 �i � sin2h�i = m�: (8.15)This formula is equivalent to Eq. (8.3) for a single layer; but in (8.15) theritial angle of total external reetion h�i depends on the refration indexaveraged over the multilayer period.As in the ase of a single layer, the modi�ed Bragg law an be simpli�edif the angles are suÆiently small:�2im � h�i2 = m2� �2D�2 : (8.16)Formulas (8.14) and (8.15) represent the modi�ed Bragg law; and, onse-quently, optial reetion from a periodial multilayer an be interpreted asa di�ration from a one-dimensional rystal. The Bragg equation (8.15) isorreted by the refration of x-rays in an averaged medium that replaesthe atual multilayer struture. The reetivity maxima an be onsideredas satellite maxima lose to the reiproal lattie point 000.If one neglets the refration, the distane of the satellite maxima an beapproximated to�� � �2D;whih similar to (8.1).The intensity of the satellite maxima are inuened by the thiknessesTA and TB of the layers in the period. The envelope urve of these maximais desribed by the struture fator of the one-dimensional rystal, i.e., themultilayer period that, in the ase of reetion, has the formFperiod(G) = Z 0�D dz�0(z)e�iGz = iG (�0B � �0A) �e�iGTA � 1� ; (8.17)where G = 2�mD is the value of Qz in the m-th satellite. Like the di�rationase already explained in Chapter 5, the m-th satellite peak vanishes, if thelayer thiknesses TA;B obey the following relation:m = p�TATB + 1� ; (8.18)where p is an integer. For instane, every fourth satellite maximum vanishesif TA=TB = 3.



156 8 Determination of Layer Thiknesses of Single Layers and MultilayersNow, let us investigate the �rst and the third terms in Eq. (8.13). Theseterms provide a maximum of the reetivity if (�A�B)2 = 1; i.e., a maximumours for the angles h�ti given by the relation2NDhni sinh�ti = p�; (8.19)where p is an integer. Negleting refration, the angular spaing betweenthese maxima,�� � �2ND;is inversely proportional to the total thikness T = ND of the multilayerstak. The nature of these maxima (Kiessig fringes) is obvious. They areaused by the interferene of the waves reeted at the free surfae and atthe substrate interfae. Simple onsideration shows that N�2 Kiessig fringesour between two neighboring satellite maxima. Often the Kiessig fringes arenot visible due to lateral sample inhomogeneities.
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Fig. 8.8. Reetion urve of a SiGe/Si multilayer overed by 210-�A-thik ap layer,CuK� radiation. The satellite maxima are denoted by vertial arrows, the maximastemming form the apping layer are denoted by vertial dotted lines. In the inset,the Kiessig fringes orresponding to the total thikness of the multilayer are denotedby arrows.As an example, we show the measured reetion urve of a SiGe/Si mul-tilayer (Fig. 8.8) overed by a Si apping layer with thikness TC . On theexperimental urve, three types of maxima an be resolved:



8.2 X-Ray Reetion by Periodial Multilayers 1571. Satellite maxima (indiated by vertial arrows in the main part of Fig. 8.8,whose angular spaing depends on the multilayer thikness D aordingto (8.15).2. Kiessig fringes (indiated by the vertial arrows in the inset). Their perioddepends on the total multilayer thikness T = ND + TC aording to(8.19).3. Maxima indiated by vertially dotted lines orrespond to the thiknessTC of the apping layer.Knowing the positions of the maxima of these types, we an estimate theorresponding thiknesses using the modi�ed Bragg law in Eqs. (8.15) and(8.19).Similar to the treatment shown in Fig. 8.1, we have plotted the square ofthe angular positions of the respetive maxima versus the m2 and obtainedthe thiknesses D = (20:5 � 0:3) nm, T = ND + TC = (232 � 5) nm, andTC = (21� 2) nm.These values an serve as starting estimates for the numerial �tting ofthe whole measured urve using the dynamial theory presented in Set.6.4. The result of the �t proedure also is shown in Fig. 8.8. In order toobtain a good orrespondene between the measured and alulated urves,we had to assume an oxide layer on top of the multilayer stak (having thethikness Tox). From the �t we obtained the thiknesses of the individuallayers as well as the average root mean square roughness � of their interfaes.The �tting proedure was almost insensitive to the Ge onentration x inthe SiGe layers. The �t yielded the following values: Tox = (3 � 1) nm,TC = (21�0:5) nm, D = (20:6�0:2) nm, TA=TB = 7:0�0:2, x = 0:35�0:15,and � = (0:7� 0:1) nm. The interfae roughnesses were onsidered using theformalism presented in Set. 11.2.We an see that the estimates of the layer thiknesses from the positions ofthe reetivity maxima nearly oinide with the more reliable values obtainedby the numerial �t to the whole urve. The thikness of the additional oxidelayer, however, ould be estimated with an relative error of only about 30%,beause no respetive intensity maxima ould be identi�ed within the angularrange of the measurement.Figure 8.9 displays the reetivity urve of a vanadium/mia multi-layer sputtered onto a sapphire substrate measured at a wavelength of� = 0:139 nm. Due to the huge di�erene of the eletron densities be-tween both onstituents the reetivity at the �rst-order Bragg peak is loseto unity. Thus the multilayer an be used as broad band monohromatorfor synhrotron radiation use. The aepted band pass depends on the peakwidth, i.e., the number of oated double layers. In the present ase thereare 40 periods, whih an be veri�ed by the 38 Kiessig osillations measuredbetween two neighboring Bragg peaks (see inset of Fig. 8.9). The multilayerperiod amounts to 3.5 nm. The reetivity urve ould be reorded over nineorders of magnitude. The 7th-order Bragg peak appears at �i � 9Æ. Using
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160 8 Determination of Layer Thiknesses of Single Layers and Multilayerstemperature, a suÆient number of moleules alter their vertial positionswithin the multilayer �lm, inreasing the total �lm thikness as a funtion oftime [108℄.Finally one an determine the average density of the organi �lm. As inFig. 8.3, the ritial angle of the �lms is smaller than that of the silionsubstrate. From h�;�lmi = 0:175Æ, one obtains an average density of %m =1.5 gm�3. Note there are Kiessig maxima in the angular range between theritial angles of �lm and substrate. This e�et is similar to that alreadyshown in Fig. 8.3. Figure 8.11 shows a similar organi multilayer, a admium
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8.3 Coplanar X-Ray Di�ration by Single Layers 161thiknesses used, the onset of the reetivity di�ers between the spetra mea-sured at di�erent �i.The layer thikness and total thikness an be determined from the peakdistane at the energy sale. In energy-dispersive reetometry the Kiessigpeak maxima and Bragg peaks appear at di�erent energies, hanging �i dueto the relation qzE. Rewriting Eq. (8.3) in terms of energy, the energy spaing�E between two neighboring intensity maxima dereases for inreasing �i.The layer thikness T follows fromÆE = h2T sin�i � 6:2T�i ; (8.20)where h and  are the Plank onstant and the veloity of light, respetively.Refration is negleted in Eq. (8.20) and sin� � �. The auray of thethikness determination depends on the energy resolution of the detetor�E:�TT = �EE : (8.21)For a germanium or Si:Li detetor �E is about 180 eV. This results in arelative auray of �TT � 1% for peaks measured at E = 10 keV. The upperlimit for evaluating a layer thikness depends on the minimum separationwhih an be resolved between two peaks. Assuming �E = 0:5 keV and�i = 0:25Æ, the limit amounts to about 300 nm. The limited energy band passof the experiment determines the lower limit of the thikness determination.Using �i;max = 4Æ and a band pass of about 15 keV, the lower limit is onthe order of 1 nm. This limit has been determined by measuring the thermalexpansion oeÆient of polymer �lms with thiknesses of about 100 nm [48℄.The evaluation of spetra shown in Fig. 8.11 gives a multilayer period ofDLB = 5:65� 0:05 nm and a total thikness of Ttot = 56 nm, whih veri�espreparation onditions. The omparison of the various spetra manifests thevalidity of Eq. (8.20). As seen, the number of the Bragg peaks is doubled,inreasing �i by a fator of two.In omparison with the angle-dispersive set-up, the auray of the abso-lute thikness determination is lower. Nevertheless eah spetrum shown inFig. 8.11 was olleted in 120 seonds whih is a small fration of the timeneessary for reording the analogous angle-dispersive urves.8.3 Coplanar X-Ray Di�ration by Single LayersX-ray reetion is sensitive to the gradient of the eletron density normal tothe air-sample interfae; that means the layer thikness an be determinedindependent of rystal perfetion. In ontrast to this, oplanar x-ray di�ra-tion measures the lattie spaing of the layer as well, presuming rystallineperfetion. Therefore, it is advantageous to ombine reetion and di�rationmeasurements in order to obtain omplete information on the investigated


