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1 Introduction

The lifetimes of nuclei depend on the type of interaction (strong, weak or
electromagnetic) responsible for the transition. In addition, the change of
energy, angular momentum and parity strongly influence the transition rates.
Using models for the nuclear structure and the interaction, it is possible to
calculate these transition rates. The measurements thus allow to test the
theoratical assumption and to further develop the underlying models.

In the setup used in our experiment we use the method of delayed coin-
cidence to measure the lifetime of the excited 14.4 keV level of the nucleus
57Fe. The transition is accompanied by a γ ray emission and therefore is of
electromagnetic nature.

2 Theoretical Considerations

2.1 Gamma Radiation

Whereas light and X rays are produced by de-excitation of atomic electron
states, gamma rays are produced by transitions from excited nuclear states
(energies in the keV range up to several MeV) and by decays or interactions
of elementary particles (energies in the MeV range). Photons of energies up
to 1020 are observed in cosmic ray experiments

In our experiment the gamma rays are. generated by de-excitation of
excited 57Fe nuclei which are produced through electron capture (ec) of 57Co
(Fig: 2.1).

The energy difference between the two states involved in the transition
is transferred to the photon except for a small fraction taken by the recoiling
nucleus. The nuclear states being quite narrow, the photon energy takes well
defined values, we observe energy lines. Often the de-excitation occurs in
several steps passing through intermediate states.

The decay scheme of Figure 2.1 shows the transitions from the 136 keV
excited state to the ground state. In addition to the 136 keV photons also
122 keV and 14.4 keV photons are produced. Figure 2.2 shows a measured
photon energy spectrum.

Due to the finite resolution the two high energy lines 136 keV and 122
keV are not separated. In addition to the lines predicted by our decay scheme
we expect the Iodine escape peak (the detector is a NaI crystal), a Compton
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Figure 2.1: Decay scheme of 57Co.

cusp and at low energies X-ray fluorescent lines of 57Fe (Kα, Kβ, ...) at ener-
gies of 6.4 keV and 7.06 keV. The resolution of the detector is not sufficient
to identify these details.

2.2 Decay Distribution

Like all radioactive decays and decays of instable particles the de-excitation
is a spontaneous, purely statistical process. It is not possible to predict the
time when a specific nucleus decays, we can only state the probability dP
for a decay in a certain time interval. It is proportional to the length of the
interval dt and is by definition equal to the expected fraction dN/N of the
decaying nuclei, where N(t) is the number of existing nuclei at time t.

dP = −dN
N

= λt (2.1)

The minus sign expresses the that the is decreasing. The proportionality

4



Figure 2.2: The γ spectrum of 57Co.

factor λ is called decay constant. High decay probabilities correspond to large
decay constants.
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We can compute the decay constant if we know the interaction operator
H using Fermi’s golden rule:

λ =

∫ Emax

0

WfidE (2.2)

Wfi =
2π

h
ρ(E)| 〈ψf |H |ψi〉 |2

Here are E the energy of the final étate photon, Wfi the transition rate
from the initial state i to the final state f and ψf , ψi the states of the nucleus
after and before the transition.

The solution of Equation 2.1 is

N(t) = N0e
−λt (2.3)

where N0 is the number of nuclei at time zero. The fraction N/N0 is
displayed in Fig. 2.3. From Equation 2.1 we derive the normalized decay
rate f(t) = dP/dt.

f(t) = λe−λt (2.4)

This funtion is the probability density for the decay time. The total
probability for a decay at any time is obviously one:

∫ ∞
0

f(t)dt =

∫ ∞
0

λe−λtdt = 1 (2.5)

The mean lifetime τ is the expression value of the decay time:

τ =

∫ ∞
0

t f(t)dt (2.6)

=

∫ ∞
0

tλe−λtdt =
1

λ

It is the universe of the decay rate. In the literature we also find the
half-life th of nuclei. It corresponds to the time where half of the initially
existing nuclei have decayed.
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Figure 2.3: Exponential decay distribution.

3 Experimental Method

3.1 Principle

A large variety of methods is used to measure lifetimes of instable nuclei
or other particles with widely varying lifetimes. When the lifetimes are in
the range of nanoseconds or milliseconds then we can apply the method of
delayed coincidence. A clock is started by a process which is related to the
production of the decaying object and stopped by the registered decay. In our
case the start signal is produced by the 121.9 keV photon produced together
with the excited 14.4 keV Fe nucleus and the stop signal is derived from the
14.4 keV photon emitted at the de-excitation.

When we collect the decays in a histogram of decay times with fixed bin
width, the histogram follows the exponential decay rate distribution. In a
logarithmic representation the measured event numbers follow a straight line
as indicated in Fig. 3.1. and the slope is just the decay rate λ
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Figure 3.1: Decay time distribution in logarithmic representation.

3.2 Experimental Setup

The experimental setup is shown schematically in Fig. 3.2. We use scin-
tillators (Sz) to detect the photons. Atoms of the scintillators are excited
by ionizing particles. Transitions from the excited state through intermedi-
ate levels to the ground state produce photons in the visible or UV spectral
range. The ionization is caused by electrons liberated from the atoms by
the photons by photo-effect or Compton scattering. The amount of emitted
light is proportional to the energy deposition produced by the photon in the
scintillator.

The scintillation light is transformed to an electric signal by photomul-
tipliers (PM). The photons hit the photocathode and produce electrons. The
efficiency is about 10% and depends strongly on their wave length. The pri-
mary electrons are sucked by an electric field and accelerated towards the first
dynode. There each electron produces an average of two to three secondary
electrons which are in turn accelerated to the second dynode a.s.o. The final
result from the cascade of 10 to 14 dynodes is a charge amplification by a
factor of 105 to 109 at the anode. The anode current is further amplified by
a charge sensitive pre-amplifier.
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Figure 3.2: The principle of the measurement.

The three components, scintillator, photomultiplier and pre-amplifier are
housed in one unit to avoid as much as possible pick-up and electronic noise.
This is achieved by short signal cables and a good shielding. The signal from
the pre-amplifier is shaped by the main amplifier (HV). The pulse shaping
allows deduce from the signal the arrival time and the energy of the photon.
When the pulse height lies in the energy window of the (adjustable) single
channel analyzer (SCA) the latter produces a square pulse used to start or
stop the time to amplitude converter (TAC) (see Fig. 3.3).
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Figure 3.3: Block diagram of electronic units of one branch of the setup.

3.3 Checking the Circuit and the Units

To check the performance of the electronic setup we start with some test
using the oscilloscope and multi channel analyzer (MCA). The tests have to
be performed for each of the units in both branches of the setup.

First we switch on the voltage of the crate which delivers the low voltage
for the NIM units:

Attention:

• Never switch on the crate without the assistantat physicist being present.

• Before switching off the crate, the high voltage has to be down to zero
and the HV supplies have to be switched off to avoid overvoltages in
the PMs.

• Do not insert or take out modules while the crate power is on.

After connection the connector unit, we switch on the HV of the PMs.
Attention:

• Before switching off the HV put the potentiometer to zero.
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Now we display the output signal of the pre-amplifier at the scope con-
necting it to point A (see Fig. 3.3). Increasing the high voltage we observe
a signal similar to the one shown in Fig. 3.4 as long as the amplifier is not
saturated.

Figure 3.4: Output signals from the pre-amplifier: a)correct, b) saturated.

Attention:

• The HV must not exceed 1 kV (relevant is the potentiometer reading,
not the display of the meter).

The slope of the rising signal contains the physical information: The
amplitude corresponds to the charge collected in the PM (and thus also to
the intensity of the scintillation light and therefore also to the photon energy).
For a constant rise time the total charge is represented by the slope. The
slope is used to produce fast signals by the main amplifier and shaper.

Advice:

• Select the HV of the PM as high as possible to improve the signal to
noise ratio and the time resolution.

Now we connect the main amplifier to the pre-amplifier and measure the
signal at point B. The main amplifier’s task is to shape the signal to provide
the short pulses independent from the amplitude which are needed to digest
the high rates.

These tasks are solved by differentiating the pre-amplifier signals. In this
way we obtain signals as shown in Fig. 3.5 which vary only in the amplitude
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and provide a measure of the charge and thus for the γ energy. The crossing
time of the axis is almost independent of the signal height and the rise time
is shorter than that of the pre-amplifier.

Figure 3.5:

The input range of the MCA input is below 10 V (see below). Therefore
the gain of the main amplifier is chosen in such a way as to guarantee pulse
heights not exceeding 10V. You have to avoid a saturation of the amplifier
as indicated in Fig. 3.5.

In order to register the γ spectra the oscilloscope is replaced by the
MCA. The input range of our MCA is from zero to 10 V. The input signals
are histogrammed into the 1023 channels according to the pulse height. The
histogram is presented graphically at the screen. It can be read-out by a
computer. The first channel (channel 0) displays the time (in seconds) used
to collect the data.

Attention:

• Do not move the PM during the measurement. The PM is not shielded
with µ metal against the magnetic field. Moving the PM can affect the
influence of the magnetic field on the amplification.

3.4 Signal Discrimination

Each of the two electronic branches has to select one of the two γ lines. We
use the circuit of Fig. 3.6.
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Figure 3.6: Circuit used to detect γ peaks.

At point B (see Fig. 3.3) the output signal is divided. One branch con-
tains only a single channel analyzer (SCA). Its working principle is explained
in Fig. 3.7.

Figure 3.7: Working principle of single channel discriminator.

The input signal of the SCA is fed into two parallel discriminators. One
of the discriminators responds above a threshold of Vc, the other one at a
threshold of Vc + ∆Vc. The logical output (NIM or TTL convention) of the
second discriminator is inverted and put in coincidence with the logic output
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of the first one. Thus a ”true” signal is produced only if the input signal Vin
fulfills Vc < ∆Vin < Vc + ∆Vc.

The SCA provides two outputs: a slow output (slow-out, TTL) of rect-
angular and a fast output (fast-out, NIM) at a fixed delay after the zero
crossing of the input signal.

The lower branch in Fig. 3.6 consists of a delay amplifier (DA) and a
linear gate (LG). The linear gate is opened by a trigger pulse fed into the
gate (gate in). During the time to interval of adjustable length started by
the gate pulse the input is connected to the output of(see Fig. 3.8). The
principle of operation is similar to that of a switched transistor. Also the
start of the time window can be delayed (gate delay).

The gate input of the LG is connected to the output of the SCA (slow
out) and the signal input of the LG to the output of the DA which provides
the signal from the main amplifier. This signal passes if the gate is open
which means that the signal has a signal height in the range selected by the
SCA. The delay of the DA and the width of the gate window of the linear
gate are adjusted such that only the positive part of the input signal appears
at the output.

The upper and lower limits of the SCA are selected such that only the
selected γ signal passes. The energy selection is either done with the help of
the oscilloscope or the MCA. First we open the SCA completely and observe
the full γ spectrum at the MCA screen. By rising the lower threshold and
lowering the upper threshold of the SCA we can eliminate all signals except
those corresponding to the γ1 line (or γ2 line for the second SCA).

For the following measurement we need only the time information and
use only the fast output of the SCA (Fig. 3.3). The lower branch of the
circuit of Fig. 3.6 has only the purpose to control the correct adjustment
of the SCA thresholds. We replace it now by a resistor. The resistor is
required, since the presence of the lower branch reduces the output signal
of the amplifier. Removing it without replacement would change the energy
interval selected by the SCA.

The required resistivity is adjusted in the following way (Fig. 3.9): We
display a line of the spectrum at the MCA with the DA in. The cursor is
moved on top of the peak. Then we replace the DA by the resistor and we
will realize that the peak migrates to one side. We adjust the resistivity until
the peak is again at the cursor position.

This procedure has to be followed for both energy branches.
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Figure 3.8: Signal diagram of a linear gate.

4 Experimental Procedure

To measure the lifetime we connect the fast output of one SCA (γ1 signal)
to the start input of the time to amplitude converter (TAC) and the other
one (γ2 signal) to the stop input.

The TAC contains a capacitor which is charged up by a constant current
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Figure 3.9: Output load of the main amplifier.

during the time interval defined by the start and stop signals. (A nearly
constant current is generated by a constant voltage and a large capacitance
as long as it is only weakly charged-up.) The capacitor is discharged by a
resistor producing a voltage signal proportional to the length of the time
interval.

The MCA is connected at point D of Fig. 3.3 to take the time spectrum.
Due to the finite time resolution it may happen that the stop signal

arrives before the start signal at the TAC. To avoid this we add a delay of
about 200 ns in the stop branch at position C of Fig. 3.3.

4.1 Time Calibration

The TAC has to be calibrated to convert the MCA channel numbers into
real time. We perform the calibration with the circuit shown in Fig. 4.1. At
point C we connect a pulse generator (or we use one of the SCA outputs and
we split the signal, one branch is connected directly to the TAC start, the
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other signal is delayed using a few passive delay boxes and fed TAC stop.
For a fixed delay setting we observe a peak at the MCA. From the linear
correlation of the delays with the peak locations we can derive the relation
between channel number and the time. This way we obtain the relative
scales. To derive the absolute time scale we would have to include in our
considerations also the various cables.

Do we need the absolute time scale for the determination of the lifetime?

Figure 4.1: Circuit the calibrate the time scale.

5 Experimental Tasks and Data Analysis

5.1 Experimantal Task

1. Sketch the relevant parts of the set-up and indicate its size. Sketch
also the signals of the preamplifier, the main amplifier and the linear
gate. Measure amplitudes, rise times and pulse lengths. Compare the
signals in view of their functions.

2. Take the γ spectrum of the source from both branches. Discuss the
spectra and compare the two.
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3. Calibrate the apparatus, as discussed above and collect the decay time
data. If necessary subtract a constant background. Determine the
lifetime of the 14.4 keV state of 57Fe

• by rough estimate using a logarithmic scale for the channel con-
tent,

• by a fit with a straight line to the logarithmic plot,

• from the mean value of the lifetimes.

4. Perform a χ2-test.

5.2 Some Remarks Concerning the Analysis

5.2.1 γ Spectrum

Estimate the energy of the escape peak from known energies of the γ peaks.

5.2.2 Measurement of the Lifetime

Determine the channel-to-time conversion factor by fitting a straight line to
the calibration plot.

Due to the finite resolution the observed time t′ differs from the real
time. This fact can be represented by a resolution function r(t′, t), which
gives the probability distribution of the measured time t′ for the true time t.
The measured time distribution f ′(t′) is obtained from the true distribution
f(t) by folding it with the resolution function r.

f ′(t′) =

∫ ∞
0

f(t)r(t′, t)dt (5.1)

Discuss the influence of a bell shaped (gaussian) resolution function

r(t′, t) =
1√
2πσ

e−
(t′−t)2

2σ2 (5.2)

on an exponantial time distribution

f(t) = f0e
−λt (5.3)
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Plot the time distribution on a semi-logarithmic paper (or log(f)) as a
function of t. Use a binning with no more than 20 bins in total and indicate
at some points the statistical error.

Draw a straight line through the linear part of the logarithmic distribu-
tion (eye ball fit). Estimate from this best line the lifetime. Add two limiting
lines which you think are still compatible with the data to obtain an upper
and lower limit of the lifetime.

After this rough estimate we use a more professional method.
We select a part of the distribution where the resolution effects are unim-

portant (exponential part, or linear in logarithmic representation). We fit
straight line to this part of the distribution. To estimate a possible contri-
bution from a constant background, we subtract the result of the fit from
the distribution (see Fig 5.3). If there is a sizable background we subtract it
from the distribution and repeat the fit.

The most precise value for the lifetime is obtained from its mean value.

τ ≈< t >=
N∑
i=1

ti/N (5.4)

There are however two problems: i) the deformation of the distribution
at short lifetimes and ii) the finite length of the time interval. The first
problem is easily solved by shifting the time zero to the beginning of the
usable part of the spectrum. (An exponential does not change its shape
when we shift the zero). For the loss of long lifetimes t > tmax (second
problem) we have to correct for. If we knew the true lifetimes τ = 1/λ we
could calculate the correction using the relation

τ ′ =

∫ tmax

0

tλe−λtdt (5.5)

between the measured mean life τ ′ and true lifetime τ . Since we do
not know τ , we use an iterative procedure. We compute the experimental
mean and use our eye ball fit to correct this result. The corrected result is
then used to calculate an improved correction a.s.o. until the result does not
change significantly anymore.
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Figure 5.1: Uncorrected decat time distribution.

Figure 5.2: Background.
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Figure 5.3: Decay time distibution after background subtraction.

6 Appendix

6.1 Poisson Distribution

The number of counts k in a certain time bin follows a Poisson distribution

W (K) =
µk

k!
e−µ (6.1)

where µ is the mean value or expectation value of k. The distribution
for different values of µ is shown in Fig. 6.1. The variance σ2 of the Poisson
distribution is

σ2 = µ (6.2)

Since for large a large number k of observed events, k is not very different
from µ we associate to each bin a statistical uncertainty of

√
k. The relative

error is ∆k/k = 1/
√
k.
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Figure 6.1: Poisson distribution for different mean values. The discrete points
are joined together to seperate the distributions.

6.2 χ2-Test

The χ2-test is used to compare a measured histogram to a theoretical pre-
diction. Thus it can be used either to check the theoretical assumption or
if the theory is well established to identity systematic errors in the measure-
ment. Since we know from very basic quantum mechanical principles and also
from many measurements that the decay times of unstable nuclei or particles
follow exponential distributions, we use this test to check our experimental
procedure.

We histogram our decay times in about 10 to 20 bins and associate to
the center of the bin the corresponding event number zi. Then we normalize
the fitted lifetime distribution to the total number of events Ntot used in the
test:

∫ tmax

tmin

ae−t/τdt = Ntot (6.3)

We compute from this formula the normalization constant and the pre-
diction zthi for each bin i. Now we want to check how well the prediction
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coincides with the observation and we compute for each bin a quantity χ2
i .

The mean squared deviation of the measured number to the predicted
number is given by the variance σ2 = zthi of the Poisson distribution. We
normalize the observed quadratic deviation to the expected deviation:

χ2
i =

(zi − zthi )2

zthi
(6.4)

Since the denominator is the expectation value of the nominator, the
expectation value of χ2

i is equal one

E(χ2
i ) = 1 (6.5)

The expectation of the sum of all normalized squared deviations

χ2 =
B∑
i=1

χ2
i =

B∑
i=1

(zi − zthi )2

zthi
(6.6)

is equal to the number B of bins

E(χ2) = B (6.7)

When χ2 is much larger than B then the agreement of the data with
the prediction is bad. To quantify the compatibility, we need the robability
density fB(χ2) of χ2. This function is given in the standard text books of
statisrics where we also find tables. We define the so-called χ2 probability of
C. It is fraction of cases (if we perform a large number of identical experi-
ments) where the χ2 is larger than the specific value of the experiment to be
checked.

C =

∫ χ2

0

fB(u)du (6.8)

If this probability turns out to be for example as small as 2% than we
can either conclude we had bad luck to fall into the 2% of cases where the
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data agree worst with the theory or that something is wrong with the data
or the theory.

The χ2 test is only sensitive to systematic errors when the statistical
errors are not too large. Therefore you should not use more than. 10 to 20
bins.

Figure 6.2: Illustration of the χ2 test.
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