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Introduction

During this laboratory course you will be introduced to the fundamentals of modern particle
physics by developing a basic understanding of general purpose Monte-Carlo event generators
(MCEGs) [1].

In particular, you will be introduced the WHIZARD [2] event generator which is a sophisticated
tool for automatic simulations of particle collisions and decays.

Before any simulations a basic understanding of particle physics and Monte-Carlo Methods is
required: This will be covered in the chapters 1.1.1 and 1.1.2. Furthermore the Standard Model
of particle physics (SM) will be presented in Chapter 1.1.1 focusing on the electroweak force later
in Chapter 2.1.2. The basics of Monte Carlo integration and its application to event generation
will be discussed in 1.1.2.

You will be introduced to the concepts of particle scattering and particle decays. Moreover you
will learn how such processes are calculated in a quantum field theory (QFT) in Chapter 2.1.1.
From this you can see the need for MCEGs such as WHIZARD , a MCEG that can calculate such
objects numerically as the analytic expression grows factorially.

Since installing WHIZARD , or any other particle physics software, is a bit sophisticated the
installation of WHIZARD is part of the preparation for this course.

On the first day (part 1) you will study and manipulate a given simulation setup in order to un-
derstand the syntax of WHIZARD’s scripting language sindarin and develop basic understanding
of particle reaction simulations.

The second day will be reserved for writing your own simulation scripts. More details will be
provided in part 2.
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1 First Day
1.1 Prerequisites
1.1.1 The Standard Model of Particle Physics

The standard model of particle physics (SM) [3–5] is a relativistic quantum field theory which
describes three of the four known fundamental interactions. It includes three generations of
quarks and leptons which both are fermions. Together they are the constituents of all visible
matter. Furthermore the SM contains vector bosons which act as the mediators of all represented
fundamental interactions. Finally one scalar boson the Higgs-boson h is included in the Standard
Model. It takes part in the unification of the weak and electromagnetic interaction and gives
masses to all SM particles.

The strong interaction is responsible for the binding of quarks to hadrons, like neutrons and
protons, as well as the cohesion of the atomic nucleus. This interaction is mediated by the so
called gluons g which are massless bosons. This interaction will not be part of this course.

The well known electromagnetic interaction which is mediated by the massless photon γ is also
included in the Standard Model. It mediates interactions between electrically charged particles.

The weak interaction is the force behind radioactive decays of matter. Its mediators are
the massive W± and Z-bosons. In comparison to the electron these bosons are very heavy so
mW = 80.379 ± 0.012 GeV12 and mZ = 91.1876 ± 0.0021 GeV. Moreover the Higgs boson’s
mass is about the same order of magnitude mh = 125.15± 0.17 GeV.

The electromagnetic and weak interaction are unified in the electroweak interaction in which
the Higgs-boson h plays an important role. In this sophisticated mechanism h is expanded
around its vacuum expectation value3 and give mass to all SM particles. Quarks, leptons as well
as the gauge bosons of the weak interaction are affected by it. This course evolves around this
interaction. Further information about it will be given in 2.1.2.

The gravitation –the last of the four fundamental interactions– is not included in the Standard
Model.

The Higgs-boson also interacts with other particles and couples to all SM particles proportional
to their masses. The SM’s charged leptons –the electron e−, the muon µ− and the tau τ−–which
all have corresponding anti-particles with opposite charge. Their anti-particles are the positron
e+, the anti-muon µ+ and the anti-tau τ+. The charged lepton’s masses arrange over several
orders of magnitude. From the electron me = 0.5109989461± 0.0000000031 keV over the muon
mµ = 105.6583745± 0.000002 MeV to the tau mτ = 1776.86± 0.12 MeV.

Each charged lepton comes with a corresponding neutrino (νe, νµ, ντ ). Neutrinos are electrically
uncharged particles only interacting via the weak force. They all have very low masses mν < 2 eV.
Like all other SM fermions the neutrinos also have corresponding anti-particles (ν̄e, ν̄µ, ν̄τ ).

The second group of SM fermions are the quarks which come in six different flavours. These
include the up u, strange s and bottom b quark. All having a fractional charges of 2/3. The
remaining three quarks, with charge −1/3 quarks are the down d, charm c and top t. The quark

1Note that we use natural units is particle physics so the speed of light c, the Plank-constant ~, the gravitational
constant G and the Bolzmann-constant kb are c = ~ = G = kb = 1. This leads to the mass having the unit of
the energy. In SI-units the mass would have [m] = GeV

c2
. In these units the mass of the proton is mp ≈ 1 GeV.

2All numeric values can be found in the Particle Data Book (PDB) [6].
3You may think of this as the expansion around its degenerated minimal values.
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1 First Day

masses also arrange over several orders from mu ≈ 2 MeV to mt = 172.76± 0.3 GeV which is
the heaviest particle in the Standard Model. Each quark has an associated anti-particle which
again has almost the same properties but the opposite electric charge.

The SM is mostly used to calculate so called cross sections of particle collision and decay
widths of particles. Booth are Lorentz-invariant measures of a possibility for a particle reaction
to happen. Calculating them involves solving often complicated multidimensional integrals in
the relativistic phase space 2.1.1. In this course you will use Monte-Carlo techniques explained
in Chapter 1.1.2 to solve those integrals.

Particle Family Particles C EM weak strong
charged leptons e−, µ−, τ− −1 x x

neutrinos νe, νµ, ντ 0 x
Up Quarks u, c, t 2/3 x x x

Down Quarks d, s, b −1/3 x x x

Table 1: Information about the interactions SM fermions are involved in. C is the fermions charge and
‘x’ means involved in this interaction. Note that each fermion has a corresponding anti-fermion which
opposite charge.

1.1.2 Monte-Carlo Techniques

Monte-Carlo: A first Example

As a first example we apply a Monte-Carlo approach for calculating the value of the irrational
number π. For that we consider a cycle with radius r/2 inside of a square with length r. The
ratio R we define

R = 4 · Acircle

Aquad
= 4 ·

(
r
2

)
2π

r · r
= π . (1.1)

Since this ratio R is independent from Radius r we can choose r = 1 from now on.
Now we generating N pairs of random numbers xi and yi with xi, yi ∈ [0, 1]. M shell be the

number of pair matching

x2i + y2i ≤ 1 . (1.2)
For a visualization of this condition see figure 1(a).
Hence M is number of points being inside of the cycle and N is the number of points in the

complete square.
According to 1.1 π simply can be estimated by

〈π〉 = 4 · M
N

. (1.3)

The convergences for this algorithm is shown in figure 1(b).
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Figure 1: (a) Distribution of N = 1000 random number pairs (xi, yi). (b) Estimation 〈π〉 in dependence
the number of iterations of the presented algorithm N . The gray line belongs to the estimation the black
line corresponds to the real value of π.

Monte-Carlo Integration

Since evaluating –especially multidimensional– integrals can be a tedious task various determin-
istic and non-deterministic methods have been developed to calculate them. One of them is the
so called Monte-Carlo integration [7]. This is a non-deterministic numeric technique that uses
random numbers to approximate the value of an integral. Due to it being non-deterministic the
outcome of each integration is different.

First consider a n-dimensional real integral I of the regular function f(~x) < fmax

I =

∫
Ω
d~x f(~x) , Ω ⊂ Rn . (1.4)

Obviously,

I < fmax ·
∫
Ω
d~x := V . (1.5)

Now consider each ~xi ∈ Ω as vector of (pseudo) random numbers4. Therefore we can
approximate

I ≈ PN :=
V

N

N∑
i

f(~xi) = V · E[f] . (1.6)

4Pseudo random numbers are produced algorithmically from so called Markov-Chains and therefor depend on an
initial value which is called seed.
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Due to the law of large numbers

I = lim
N→∞

PN . (1.7)

Therefore the convergences of the integral is ensured for a sufficiently large number N .
By using the some properties of the variance V [PN ] = σ2

PN
you might show that

σPN
∼ 1√

N
. (1.8)

Note that the integration’s accuracy therefor is dependent on the number of iterations N
and the scaling of its standard derivation σPN

can be estimated by 1√
N

. However, this cannot
be understood as a strict error bound since a particular realization of PN may not cover all
important features of an integral.

In contrast to many other integration methods the error of the Monte-Carlo integration does
not scale with the integral’s number of dimensions. This may be its most significant advantage
over deterministic integration methods.

1.1.3 WHIZARD

WHIZARD 5 [2] is a general purpose MCEG designed for the efficient calculation of multi-particle
scattering cross sections and simulated event samples.

The program automatically computes complete tree-level matrix elements, integrates them
over phase space, evaluates distributions of (kinematic) observables like the invariant mass or
the scattering angle.

There is no conceptual limit on the process complexity; using current hardware, the program
has successfully been applied to scattering processes with up to eight particles in the final state.

The standard model of particle physics as well as many other models have been implemented.
WHIZARD 1.1.4 will be used for all calculations in this course. You will be guided through the

installation of WHIZARD in chapter and run and investigate a first example on the first day.

1.1.4 Install WHIZARD

Since installing WHIZARD might be a non trivial task –especially for someone not familiar with
Linux– the installation will is explained in this chapter. You are expected to install WHIZARD on
your own laptop as preparation for the first experiment so that at least one participant has
a functional WHIZARD installation on a notebook. If the installation is for some reason is not
possible on your computer or you don’t have a notebook you will find WHIZARD installed on a
computer at the university and you can also do the installation on your own there.

However installing WHIZARD is part of this course so you might at least try it on your own.
For further information on the WHIZARD installation see.6

Note that running WHIZARD on Windows is not supported. Therefor you need to set up a
Linux installation first. For that you can set up a Virtualbox with a with Linux distribution,

5https://whizard.hepforge.org/
6https://whizard.hepforge.org/manual/manual003.html
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Ubuntu LTS or Debian for example would be sufficient.78 If you are Running Windows 10
you might alternatively set up its Linux subsystem (WSL) supported by Microsoft and install
WHIZARD there9. Furthermore you can install a second OS on your computer and run it in dual
boot.

Packages Linux on Debian that are required for WHIZARD are at least:

• gfortran

• libtool

• gcc and g++

• ocaml

• latex e.g. texlive and texlive-metapost if plots from WHIZARD are desired

• building-essential

Depending on your Linux distribution some further packages might be required. The name of
your package manager depends on your Linux distribution. On Debian its name is apt-get.

To install WHIZARD on your own computer you can download it here10.
Open a terminal on your computer and go to the directory where the installation file is located.
The file is called whizard-3.x.x.tar.gz. The file ending tar.gz means that it’s a wrapped

bundle of files. It consumes less space and it is easier to transport. First you need to untar it.

<path>\$ tar -xzfv whizard-3.x.x.tar.gz

This command will unpack the files to a folder called whizard-3.x.x. In it you will find a
file called makefile.

You can understand it as a recipe for building WHIZARD . It contains all necessary steps to
build the functional program.

Create the folders build and install next.

<path>\$ mkdir build install

The install is the folder where you can find the executable WHIZARD after the complete
installation. The folder build will be used to install WHIZARD from within it. Now so change to
it.

<path>\$ cd build

Inside the build folder

<path>\build\$~../whizard-3.x.x/configure - -prefix=<path>/install/

7download https://www.virtualbox.org/wiki/Downloads
8Set up Virtualbox with Ubuntu: https://www.wikihow.com/Install-Ubuntu-on-VirtualBox
9Choose manual WSL install: https://docs.microsoft.com/en-us/windows/wsl/install-win10

10https://whizard.hepforge.org/downloads/
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This will set up everything for the installation. You don’t need any additional options for
this course but if you like to use WHIZARD later in a more advanced setting you might specify
something here. See the manual for more details here11. - -prefix is used the specify your
installation directory. Otherwise WHIZARD would be installed directly to the build folder.

Next you the need to install the program.

<path>\build\$ make && make install && make check

This will execute all three command after the previous command has fully executed without
any error. make will prepare the installation, make install will do the installation and make
check will check if everything is installed correctly. Note that this will take some time. If make
check dose not encounter any fails (xfails are fine) you have installed WHIZARD successfully.

1.2 Exercises
After the installation is done you will find a folder \share\ whizard\ examples inside the
install folder. The examples all end with .sin. They are called sindarin files since
sindarin is WHIZARD own scripting language. More information about WHIZARD’s scripting
language sindarin can be found here12.

Now create a new folder for your first WHIZARD run and copy Z-lineshape.sin to it. Open
the file Z-lineshape.sin and study the commands. You might understand a few lines without
knowing anything about sindarin .

Then run WHIZARD inside that your newly created folder and have a look at the output files.

<path>\test_run\$ <installation-path-of-whizard>/whizard Z-lineshape.sin

Find the results of your calculation. Does the size of the errors fit your expectations? Find
the seed of your run. Study the file and try to find the meaning for each command.

Complete the following tasks each one starting from Z-lineshape.sin:

A1. First add the error value to your output data then remove the integration of realcorr.
Now lower the number of iterations for bornproc to 2 : 250 : ”gw”, 1 : 100 and then further
to 1 : 10 : ”gw”, 1 : 5. Document your results for booth runs. Compare your results.

A2. Remove all cuts from the sindarin file.

A3. Again remove the integration of realcorr and set the Z-Boson’s mass MZ = 100 GeV.
Adapt scan and integration to these changes.

A4. Remove the integration of realcorr again and set the Z-Boson’s width WZ = 5 GeV.
Adapt scan and integration to these changes.

Document and describe your results in your report. Do your results fit your expectations?
Does the error of your results fit your expectation? Furthermore describe the meaning of the
changes you made in the sindarin files and adapt the plot description. Make sure that your
sindarin files don’t contain artifacts form previous runs and comment them reasonable and
meaningfully.
11https://whizard.hepforge.org/manual/manual003.html
12https://whizard.hepforge.org/manual/manual005.html#sec66
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# We choose our favourite model
model = SM

# Define incomming particle beam
beams = e1, E1

# Define some particle containers for the cuts
alias lep = e1:E1:e2:E2
alias prt = lep:A

# These are the two processes we want to compare
process bornproc = e1, E1 => e2, E2
process realcorr = e1, E1 => e2, E2, gamma

# Compile model and process information
compile

# This is a cut on the phase space. If ’true’ the matrix element will be set to zero

cuts = all E >= 100 MeV [prt]
and all abs (cos(Theta)) <= 0.99 [prt]
and all M2 >= (1 GeV)^2 [prt, prt]

# Define title and labels as global variables that will be used in the plot:
$description = "A WHIZARD 3.0 Example"
$x_label = "$\sqrt{s}$/GeV"
$y_label = "$\sigma(s)$/pb"
x_min = 88 GeV
x_max = 95 GeV

# Allocate one plot
$title = "The Z Lineshape in $e^+e^-\to\mu^+\mu^-$"
plot lineshape_born

# Allocate another plot
$title = "The Z Lineshape in $e^+e^-\to\mu^+\mu^-\gamma$"
plot lineshape_realcorr {$draw_options = "withcolor blue"}

# Compute the cross sections for different sqrts
# with smaller steps around the peak
scan sqrts = ((88.0 GeV => 90.0 GeV /+ 0.5 GeV),

(90.1 GeV => 91.9 GeV /+ 0.1 GeV),
(92.0 GeV => 95.0 GeV /+ 0.5 GeV)) {

integrate (bornproc) { iterations = 2:1000:"gw", 1:2000 }
record lineshape_born (sqrts, integral (bornproc) / 1000)
integrate (realcorr) { iterations = 5:3000:"gw", 2:5000 }
record lineshape_realcorr (sqrts, integral (realcorr) / 1000)

}

# Combine the plots to one graph
$title = "The Z Lineshape in $e^+e^-\to\mu^+\mu^-(\gamma)$"
graph g1 = lineshape_born & lineshape_realcorr { $draw_options = "withcolor blue" }

compile_analysis { $out_file = "Z-lineshape.dat" }

9
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2 Second Day
2.1 Prerequisites
2.1.1 Phase Space and kinematic Observables

As you already know all possible states of a system correspond to specific point in phase space.
Since particle physics is a relativistic theory its phase space is spanned by the 4-vectors of
positions Q = (t, ~x) and momenta P = (E, ~p). However calculations turn out to be calculated
most conveniently in momentum space. Therefor we define incoming Am(Pm) and outgoing
Bn(Kn) particles in a particular particle reaction. Of course all possible trajectories in particle
physics are constraint by momentum and energy conservation.13

An arbitrary particle reaction can be written as

A1(P1), . . . , Am(Pm) → B1(K1), . . . , Bn(Kn) . (2.1)

In practice however only particle decays 2.2 and collisions 2.3 are considered:

A(P ) → B1(K1), . . . , Bn(Kn) (2.2)

A1(P1), A2(P2) → B1(K1), . . . , Bn(Kn) (2.3)

Cross section σ and decay width Γ booth are Lorentz-invariant measures for probabilities of
particle reaction rates and can be calculate from a corresponding matrix element M.

The matrix element M itself contains all information corresponding to particular process.
Therefor all formulas in this chapter for 2.2 and 2.3 are universal and valid for all particle
reactions and do not depend on a particular theory.

According to Fermis golden rule we can calculate those probabilities knowing the phase space
and a matrix element M.

dP (A1, A2, . . . → B1, B2, . . . ) =|〈B1, B2, . . . |A1, A2, . . . 〉|2 (2.4)

=(2π)4δ(4)

(∑
i

Pi −
∑
i

Ki

)
|M|2

∏
i

d3~ki
(2π)32Ei

∏
j

d3 ~pj
(2π)32Ej

(2.5)

Note the delta-distribution δ(4) reflects the overall momentum and energy conservation and
the factor (2π)4 comes from its normalization.

Decay rate Γ and cross section σ will both presented in their differential form since there total
value can always be calculated by integrating over all variables.

In this course WHIZARD will be used to calculate the cross section σ since it is able to handle
the integration of phase space and matrix element properly in a numerical way.
13https://pdg.lbl.gov/2021/web/viewer.html?file=%2F2021/reviews/rpp2020-rev-kinematics.pdf
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Decay Width

In its differential form the decay rate Γ is given by

dΓ(P,K1, . . . ) =
(2π)4

2M
· |M|2 · δ(4)

(
P −

∑
i

Ki

)∏
i

d3~pi
(2π)32Ei

. (2.6)

The factor 2M can be obtained from the phase space by using 4-Momentum conservation
M2 = P 2 = (K1 + K2)

2 and some properties of the delta distribution. Note that M is the
decaying particle’s mass.

For a 1 → 2 in the decaying particle’s rest frame one obtains

dΓ(P,K) =
1

32π2
· |M|2 · |~k|

M2
d cos θdϕ . (2.7)

Branching Ratios

For a decaying particle A and particular decay channel A → B1, . . . , Bn often the so called
branching ratios B are listed where

B =
ΓA→B1,...,Bn

ΓA→X
. (2.8)

In this notation X symbolizes the sum of all possible decay channels therefor B ∈ [0, 1].

Cross Section and Luminosity

Since it differs only in one more incoming particle in the phase space the cross section σ has a
similar form to the decay rate. Again δ(4) reflects the overall momentum and energy conservation
and the different prefactor can be obtained in a similar way

dσ(P1, P2,K1, . . . ) =
(2π)4√

(P1 · P2)2 − (m1m2)2
· |M|2 · δ(4)

(
P1 + P2 −

∑
i

Ki

)∏
i

d3~pi
(2π)32Ei

(2.9)

≈ (2π)4

4s
· |M|2 · δ(4)

(
P1 + P2 −

∑
i

Ki

)∏
i

d3~pi
(2π)32Ei

. (2.10)

Here s = (P1 + P2)
2 is one of the three so called Mandelstam variables which are a convenient

set of Lorentz-invariant variables to parameterize the kinematic in 2 → 2 scattering processes.
Note that

√
s is approximately the same as the collider’s energy E for s � m2

i . In the center of
mass frame (CMS)

√
s =

√
(P1 + P2)2 ≈

√
2P1 · P2 = ECMS . (2.11)
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For our propose it is furthermore reasonable to assume s � m2
i . Therefor for a 2 → 2

scattering one obtains by using the δ-distribution

dσ(P1, P2,K1,K2) =
1

64π2s
· |M|2 · d cos θdϕ . (2.12)

To calculate the number of events N to a certain type of interaction derived for the cross
section σ in a real particle collider setting the luminosity L is also necessary. In contrast to
the cross section which contain all information for particle reaction the luminosity reflects the
properties of the particle collider like the collision rate of the initial state particles. Therefor

N =

∫
dtL(t)σ(t) . (2.13)

Assuming nigher the cross section nor the luminosity having an explicit time t dependence

N = T · L · σ (2.14)

where T is the running time of the collider.

Angular Distribution

The distribution for any (kinematic) observable can be derived from 2.6 or 2.12 by elementary
differential operations and integrating out the other dependencies.

One of them is the angular distribution. Due to the conservation of energy and momentum,
the only nontrivial distribution for a 2 → 2 process is the distribution of the scattering angle θ,
the angle between a final state particle and the beam axis. Therefor

dσ

dθ
=

sin θ

32πs
· |M|2 . (2.15)

For further information on the kinematics on particle colliders see [8].

2.1.2 The Electroweak Interaction and its Feynman Rules

As mentioned in 1.1.1 one of the fundamental forces of nature is the electroweak interaction. In a
simplistic way it can be understood as a unification of the electromagnetic and the weak forces.

In the Standard Model this unification is derived by the so called Higgs-mechanism which
also generates the masses for all particles.

In contrast to the electromagnetic interaction which is mediated by the massless photon γ,
the weak interaction is mediated by the massive vector bosons W± and Z and the massive
Higgs-boson h.

The electroweak interaction conserves the electromagnetic charge as well as the lepton number
both in total and for each generation separately. The charges and lepton numbers of all leptons
and the electroweak mediators can be found in table 2.

12
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Particle C Le Lµ Lτ

e± ±1 ∓1 0 0

µ± ±1 0 ∓1 0

τ± ±1 0 0 ∓1

νe/ν̄e 0 ∓1 0 0

νµ/ν̄µ 0 0 ∓1 0

ντ/ν̄τ 0 0 0 ∓1

W± ±1 0 0 0

Z,h,γ 0 0 0 0

Table 2: Information about the quantum numbers of all lepton and the mediators of the electroweak
interaction. C is the charge and Li is the lepton number in each generation.

2.1.3 Feynman Diagrams and Perturbation Theory

Even if it is usually not possible to calculate the matrix element of an interacting theory exactly,
one can approach the solution pertubatively. This is where the so-called Feynman rules of the
theory come into play. Each Feynman diagram is a pictorial representation of a mathematical
expression contributing to the matrix element. It is a intuitive way to get all contributions to
certain order of perturbation theory for a particular process.

There are tree types of elements a Feynman diagram can be build form. First there are vertices.
They can be understood as an interaction of several particles at a point in spacetime. Each of
them is proportional to an order of the coupling constant of the theory it was derived from. For
this course we oversimplify it by calling the coupling constant just αEW. In reality there is more
than one coupling constant involved and one has to be careful to get all contributions to obtain
a certain precision.

The electroweak interaction involves vertices shown in figure 2.
The different line styles involving bosons have no meaning other than to distinguish vector

bosons from the scalar Higgs h. However for the fermion the direction of the arrow distinguish a
fermion from its anti-fermion what becomes especially important when momentum is assigned
to the particles.

Using table 2 you might check that each of those vertices conserves charge C the lepton
number in each generation Li. This not happened per accident. It is an important feature of
the Feynman rule expansion. Therefor it’s obvious that diagrams build from these vertices also
conserves C and Li.

The other sets of expressions you need to know to calculate a matrix element are rules for the
lines themselves. An internal line is called propagator. The lines corresponding to a final or
initial state particle are called a external lines have different expressions then the propagators.
For this course we won’t go any deeper in that.

For building a diagram corresponding to a correction of a certain order in perturbation theory
you just need to put two ends with the same particle together. The initial and final state

13
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Figure 2: Some vertices of the electroweak interaction. Note that there are also vertices coupling four
bosons to each other but for now we ignore them. You might find them on your own using table 2.

particles are the left and right sided loose ends of the diagram.
An exemplary contribution to the matrix element of e+e− → W+W− is shown in figure 3.

Of course there a several more contributing diagrams to this process. You might find the other
diagrams yourself.14

Of course you can draw diagrams with more than two vertices but they would contribute
to a different order in perturbation theory. For now just say the order in perturbation theory
corresponds to the number of vertices of the diagram. However in a real calculation it’s different
since for example a vertex itself might have a higher order in the coupling constant.

e−

e+

W−

W+

γ

Figure 3: One of the Feynman diagrams contributing to the matrix element of e+e− → W+W−.

14If you want to draw Feynman diagram in your protocol see the TIKZ page for latex [9].
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2.2 Exercises
Now the goal is to analysis

e+e− → W+W− → `1`2`3`4, `i ∈ {e, µ, τ, νe, νµ, ντ} . (2.16)

Therefor you will simulate two different approximations of the process 2.16:

• For this analysis you can assume an idealized detector that can detect all final state
particles, including neutrinos, under all circumstances. Therefor there are no blind spots
and all non-identical particles can be distinguished from each other.

• Due to the high collision energy
√
s leptons masses can safely be neglected since m` �

√
s.

• You will find the newest values of masses m and widths w 15 of W±, Z and H in the
particle data book (PDG)16.

Before calculating any process think about what subset final state leptons are possible from a
decaying W -Boson pair. Choose your final leptons accordingly for each task.

B1. Sub-Process-Integration: First consider e+e− → W+W− → `1`2`3`4 and use WHIZARD to
scan over the process energy

√
s again. As a simplification use the branching ratios for

W+ and W− from the PDB instead of calculating the full decays. Adjust the lower bound
to the intermediate state. The upper bound should be

√
s = 4 ·MW . The chosen energy

steps should provide an insight about all relevant phenomena of the process. Discuss your
results.

B2. Hard-Process-Integration: Now consider the e+e− → `1`2`3`4 and use WHIZARD to
scan over the process energy

√
s. Choose the upper and lower bound the same as the

previous task. Again the chosen energy steps should provide an insight about all relevant
phenomena of the process. To obtain a finite results it is necessary to apply a cut on the
kinematics. For this use | cos θ| < 0.985. Compare your results with the previous task.

B3. Angular Distribution: Now consider e+e− → W+W− and use WHIZARD’s simulate
command to produce the θ-distribution of W+ and W− with θ ∈ [0°, 180°]. Use WHIZARD to
generate a histogram17 of this distribution. The histogram should be normalized to the
total cross section of the process. For this use $sample_normalization="sigma/N". A
bin width of 20° will be sufficient.

√
s should be the about the energy of the cross sections

maximum from task B2.. If you don’t have produced enough events on the first run you
can combine the data of several histograms.

15A unstable particle in scattering process shows up as resonance in the cross section what can be estimated via a
relativistic generalization of the Breit-Wigner-Formula. Therefor near the resonance M ∼ (P 2 −m2 + imw)−1.
For this distribution the width can be derived.

16https://pdg.lbl.gov/2021/download/db2020.pdf
17An example how to generate a histogram can in be found in W-endpoint.sin which is located in the examples

folder.
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Refinements
If all prior tasks are completed and there is still enough time you might proceed with the
following tasks. Nevertheless proceeding won’t give you some additional or hidden bonus points.
Therefor it’s possible achieve the highest grade in the course without doing any of these.

R1. Angular Cuts: Redo task B1. and B2. under the assumption that no particles could be
detected within a range of θb = 20° around the beam axis. For that you need to set a cut
on the matrix element. Compare your results with the results of the previous tasks.

R2. Background: Do an analysis of the background of the process e+e− → W+W− → `1`2`3`4.
For this list all two boson intermediate states. Carefully think which can be neglected.
Compare your results. Redo the tasks B1. and B3. for the remaining processes.

Report
• Document the seeds used for each run with WHIZARD and write it in the description of

each of your plots.

• Your protocol has to contain your sindarin files as well as your full WHIZARD data as an
appendix.

• Your sindarin files are part of your protocol, so make sure that they are well structured
and commented in a way that helps understanding them.

• Make sure hat your plots have proper x- and y-axis labels as well as a reasonable title.

• Describe your observation. So they match your expectations?

• Discuss the error values of your simulations. Do their values seam reasonable?

16
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